6ouo

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (06:33, 12 February 2025) (edit) (undo)
 
Line 9: Line 9:
</table>
</table>
== Function ==
== Function ==
-
[https://www.uniprot.org/uniprot/RL22_ECOLI RL22_ECOLI] This protein binds specifically to 23S rRNA; its binding is stimulated by other ribosomal proteins, e.g. L4, L17, and L20. It is important during the early stages of 50S assembly. It makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit and ribosome.[HAMAP-Rule:MF_01331_B] The globular domain of the protein is one of the proteins that surrounds the polypeptide exit tunnel on the outside of the subunit, while an extended beta-hairpin is found that penetrates into the center of the 70S ribosome where it lines the wall of the exit tunnel. Removal of most of this hairpin (residues 85-95) does not prevent its incorporation into 70S ribosomes. Two of the hairpin residues (91 and 93) seem to be involved in translation elongation arrest of the SecM protein, as their replacement by larger amino acids alleviates the arrest.[HAMAP-Rule:MF_01331_B]
+
[https://www.uniprot.org/uniprot/RL2_ECOLI RL2_ECOLI] One of the primary rRNA binding proteins. Located near the base of the L1 stalk, it is probably also mobile. Required for association of the 30S and 50S subunits to form the 70S ribosome, for tRNA binding and peptide bond formation. It has been suggested to have peptidyltransferase activity; this is highly controversial.[HAMAP-Rule:MF_01320_B] In the E.coli 70S ribosome in the initiation state it has been modeled to make several contacts with the 16S rRNA (forming bridge B7b, PubMed:12809609); these contacts are broken in the model with bound EF-G.[HAMAP-Rule:MF_01320_B]
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
When the ribosome encounters a stop codon, it recruits a release factor (RF) to hydrolyze the ester bond between the peptide chain and tRNA. RFs have structural motifs that recognize stop codons in the decoding center and a GGQ motif for induction of hydrolysis in the peptidyl transfer center 70 A away. Surprisingly, free RF2 is compact, with only 20 A between its codon-reading and GGQ motifs. Cryo-EM showed that ribosome-bound RFs have extended structures, suggesting that RFs are compact when entering the ribosome and then extend their structures upon stop codon recognition. Here we use time-resolved cryo-EM to visualize transient compact forms of RF1 and RF2 at 3.5 and 4 A resolution, respectively, in the codon-recognizing ribosome complex on the native pathway. About 25% of complexes have RFs in the compact state at 24 ms reaction time, and within 60 ms virtually all ribosome-bound RFs are transformed to their extended forms.
 +
 
 +
The structural basis for release-factor activation during translation termination revealed by time-resolved cryogenic electron microscopy.,Fu Z, Indrisiunaite G, Kaledhonkar S, Shah B, Sun M, Chen B, Grassucci RA, Ehrenberg M, Frank J Nat Commun. 2019 Jun 12;10(1):2579. doi: 10.1038/s41467-019-10608-z. PMID:31189921<ref>PMID:31189921</ref>
 +
 
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 6ouo" style="background-color:#fffaf0;"></div>
==See Also==
==See Also==
*[[Ribosome 3D structures|Ribosome 3D structures]]
*[[Ribosome 3D structures|Ribosome 3D structures]]
 +
== References ==
 +
<references/>
__TOC__
__TOC__
</SX>
</SX>

Current revision

RF2 accommodated state bound 70S complex at long incubation time

6ouo, resolution 3.70Å

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools