6pek

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (05:56, 14 May 2025) (edit) (undo)
 
Line 12: Line 12:
== Function ==
== Function ==
[https://www.uniprot.org/uniprot/SPAST_HUMAN SPAST_HUMAN] ATP-dependent microtubule severing protein. Microtubule severing may promote reorganization of cellular microtubule arrays and the release of microtubules from the centrosome following nucleation. Required for membrane traffic from the endoplasmic reticulum (ER) to the Golgi and for completion of the abscission stage of cytokinesis. May also play a role in axon growth and the formation of axonal branches.<ref>PMID:11809724</ref> <ref>PMID:12676568</ref> <ref>PMID:15716377</ref> <ref>PMID:16219033</ref> <ref>PMID:17389232</ref> <ref>PMID:19000169</ref>
[https://www.uniprot.org/uniprot/SPAST_HUMAN SPAST_HUMAN] ATP-dependent microtubule severing protein. Microtubule severing may promote reorganization of cellular microtubule arrays and the release of microtubules from the centrosome following nucleation. Required for membrane traffic from the endoplasmic reticulum (ER) to the Golgi and for completion of the abscission stage of cytokinesis. May also play a role in axon growth and the formation of axonal branches.<ref>PMID:11809724</ref> <ref>PMID:12676568</ref> <ref>PMID:15716377</ref> <ref>PMID:16219033</ref> <ref>PMID:17389232</ref> <ref>PMID:19000169</ref>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Many members of the AAA+ ATPase family function as hexamers that unfold their protein substrates. These AAA unfoldases include spastin, which plays a critical role in the architecture of eukaryotic cells by driving the remodeling and severing of microtubules, which are cytoskeletal polymers of tubulin subunits. Here, we demonstrate that a human spastin binds weakly to unmodified peptides from the C-terminal segment of human tubulin a1A/B. A peptide comprising alternating glutamate and tyrosine residues binds more tightly, which is consistent with the known importance of glutamylation for spastin microtubule severing activity. A cryo-EM structure of the spastin-peptide complex at 4.2 A resolution revealed an asymmetric hexamer in which five spastin subunits adopt a helical, spiral staircase configuration that binds the peptide within the central pore, while the sixth subunit of the hexamer is displaced from the peptide/substrate, as if transitioning from one end of the helix to the other. This configuration differs from a recently published structure of spastin from Drosophila melanogaster, which forms a six-subunit spiral without a transitioning subunit. Our structure resembles other recently reported AAA unfoldases, including the meiotic clade relative Vps4, and supports a model in which spastin utilizes a hand-over-hand mechanism of tubulin translocation and microtubule remodeling.
 +
 +
Structure of spastin bound to a glutamate-rich peptide implies a hand-over-hand mechanism of substrate translocation.,Han H, Schubert HL, McCullough J, Monroe N, Purdy MD, Yeager M, Sundquist WI, Hill CP J Biol Chem. 2019 Nov 25. pii: AC119.009890. doi: 10.1074/jbc.AC119.009890. PMID:31767681<ref>PMID:31767681</ref>
 +
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 6pek" style="background-color:#fffaf0;"></div>
== References ==
== References ==
<references/>
<references/>

Current revision

Structure of Spastin Hexamer (Subunit A-E) in complex with substrate peptide

6pek, resolution 4.20Å

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools