1gju

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (08:48, 9 May 2024) (edit) (undo)
 
Line 20: Line 20:
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1gju ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1gju ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Maltosyltransferase (MTase) from the hyperthermophile Thermotoga maritima represents a novel maltodextrin glycosyltransferase acting on starch and malto-oligosaccharides. It catalyzes the transfer of maltosyl units from alpha-1,4-linked glucans or malto-oligosaccharides to other alpha-1,4-linked glucans, malto-oligosaccharides or glucose. It belongs to the glycoside hydrolase family 13, which represents a large group of (beta/alpha)(8) barrel proteins sharing a similar active site structure. The crystal structures of MTase and its complex with maltose have been determined at 2.4 A and 2.1 A resolution, respectively. MTase is a homodimer, each subunit of which consists of four domains, two of which are structurally homologous to those of other family 13 enzymes. The catalytic core domain has the (beta/alpha)(8) barrel fold with the active-site cleft formed at the C-terminal end of the barrel. Substrate binding experiments have led to the location of two distinct maltose-binding sites; one lies in the active-site cleft, covering subsites -2 and -1; the other is located in a pocket adjacent to the active-site cleft. The structure of MTase, together with the conservation of active-site residues among family 13 glycoside hydrolases, are consistent with a common double-displacement catalytic mechanism for this enzyme. Analysis of maltose binding in the active site reveals that the transfer of dextrinyl residues longer than a maltosyl unit is prevented by termination of the active-site cleft after the -2 subsite by the side-chain of Lys151 and the stretch of residues 314-317, providing an explanation for the strict transfer specificity of MTase.
 +
 +
The crystal structure of Thermotoga maritima maltosyltransferase and its implications for the molecular basis of the novel transfer specificity.,Roujeinikova A, Raasch C, Burke J, Baker PJ, Liebl W, Rice DW J Mol Biol. 2001 Sep 7;312(1):119-31. PMID:11545590<ref>PMID:11545590</ref>
 +
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 1gju" style="background-color:#fffaf0;"></div>
==See Also==
==See Also==
*[[Glycosyltransferase 3D structures|Glycosyltransferase 3D structures]]
*[[Glycosyltransferase 3D structures|Glycosyltransferase 3D structures]]
 +
== References ==
 +
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>

Current revision

Maltosyltransferase from Thermotoga maritima

PDB ID 1gju

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools