1h3o
From Proteopedia
(Difference between revisions)
Line 15: | Line 15: | ||
<jmolCheckbox> | <jmolCheckbox> | ||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/h3/1h3o_consurf.spt"</scriptWhenChecked> | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/h3/1h3o_consurf.spt"</scriptWhenChecked> | ||
- | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/ | + | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> |
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
</jmolCheckbox> | </jmolCheckbox> | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1h3o ConSurf]. | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1h3o ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | The crystal structure is presented of a complex formed by the interacting domains from two subunits of the general transcription factor TFIID, the human TATA binding protein-associated factors hTAF4 (hTAF(II)135) and hTAF12 (hTAF(II)20). In agreement with predictions, hTAF12 forms a histone fold that is very similar to that of histone H2B, yet unexpected differences are observed between the structures of the hTAF12 interaction domain of hTAF4 and histone H2A. Most importantly, the hTAF4 fragment forms only the first two helices of a classical histone fold, which are followed by a 26-residue disordered region. This indicates that either full-length TAF4 contains an unusually long connecting loop between its second and third helix, and this helix is not required for stable interaction with TAF12, or that TAF4 represents a novel class of partial histone fold motifs. Structural models and structure-based sequence alignments support a role for TAF4b and hSTAF42/yADA1 as alternative partners for TAF12 and are consistent with the formation of nucleosome-like histone-fold octamers through interaction of TAF12 with a TAF6-TAF9 tetramer, yet argue against involvement of TAF12-containing histone-fold pairs in DNA binding. | ||
+ | |||
+ | Crystal structure of a subcomplex of human transcription factor TFIID formed by TATA binding protein-associated factors hTAF4 (hTAF(II)135) and hTAF12 (hTAF(II)20).,Werten S, Mitschler A, Romier C, Gangloff YG, Thuault S, Davidson I, Moras D J Biol Chem. 2002 Nov 22;277(47):45502-9. Epub 2002 Sep 16. PMID:12237304<ref>PMID:12237304</ref> | ||
+ | |||
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
+ | <div class="pdbe-citations 1h3o" style="background-color:#fffaf0;"></div> | ||
+ | == References == | ||
+ | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> |
Current revision
Crystal Structure of the Human TAF4-TAF12 (TAFII135-TAFII20) Complex
|