1iny

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (07:27, 23 October 2024) (edit) (undo)
 
Line 15: Line 15:
<jmolCheckbox>
<jmolCheckbox>
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/in/1iny_consurf.spt"</scriptWhenChecked>
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/in/1iny_consurf.spt"</scriptWhenChecked>
-
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
+
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked>
<text>to colour the structure by Evolutionary Conservation</text>
<text>to colour the structure by Evolutionary Conservation</text>
</jmolCheckbox>
</jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1iny ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1iny ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
A phosphonate analog of N-acetyl neuraminic acid (PANA) has been designed as a potential neuraminidase (NA) inhibitor and synthesized as both the alpha (ePANA) and beta (aPANA) anomers. Inhibition of type A (N2) and type B NA activity by ePANA was approximately a 100-fold better than by sialic acid, but inhibition of type A (N9) NA was only ten-fold better than by sialic acid. The aPANA compound was not a strong inhibitor for any of the NA strains tested. The crystal structures at 2.4 A resolution of ePANA complexed to type A (N2) NA, type A (N9) NA and type B NA and aPANA complexed to type A (N2) NA showed that neither of the PANA compounds distorted the NA active site upon binding. No significant differences in the NA-ePANA complex structures were found to explain the anomalous inhibition of N9 neuraminidase by ePANA. We put forward the hypothesis that an increase in the ePANA inhibition compared to that caused by sialic acid is due to (1) a stronger electrostatic interaction between the inhibitor phosphonyl group and the active site arginine pocket and (2) a lower distortion energy requirement for binding of ePANA.
 +
 +
A sialic acid-derived phosphonate analog inhibits different strains of influenza virus neuraminidase with different efficiencies.,White CL, Janakiraman MN, Laver WG, Philippon C, Vasella A, Air GM, Luo M J Mol Biol. 1995 Feb 3;245(5):623-34. PMID:7844831<ref>PMID:7844831</ref>
 +
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 1iny" style="background-color:#fffaf0;"></div>
==See Also==
==See Also==
*[[Neuraminidase 3D structures|Neuraminidase 3D structures]]
*[[Neuraminidase 3D structures|Neuraminidase 3D structures]]
 +
== References ==
 +
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>

Current revision

A SIALIC ACID DERIVED PHOSPHONATE ANALOG INHIBITS DIFFERENT STRAINS OF INFLUENZA VIRUS NEURAMINIDASE WITH DIFFERENT EFFICIENCIES

PDB ID 1iny

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools