1kvv
From Proteopedia
(Difference between revisions)
Line 19: | Line 19: | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1kvv ConSurf]. | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1kvv ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Protein SRP19 is an essential RNA-binding component of the signal recognition particle (SRP) in Archaea and Eucarya. A three-dimensional solution structure of the 104 residue SRP19 from the hyperthermophilic archaeon Archaeoglobus fulgidus, designated as Af19, was determined by NMR spectroscopy. Af19 contains three beta-strands, two alpha-helical regions, arranged in a betaalphabetabetaalpha topology, a 3(10) helix, and a disordered C-terminal tail. This fold is similar to the betaalphabetabetaalphabeta RNP motif present in numerous other RNA-binding proteins, which engage their cognate RNAs using conserved sequence motifs present within beta-strands 1 and 3. Mutagenesis studies of human SRP19, however, reveal the major contact sites with SRP RNA reside within loops 1, 3, and 4. These contacts were verified by the crystal structure of human SRP19 complexed to SRP RNA helix 6 reported subsequent to the submission of the manuscript. The crystal structure also reveals that, unlike canonical RNP motifs, SRP19 does not engage specific RNA bases through conserved sequence motifs present within beta-strands 1 and 3. Instead, SRP19 uses residues both within and flanking beta-strand 1 to stabilize the complex through direct and indirect contacts to the phosphate backbone of the tetraloop, leaving the bases of the tetraloop exposed. This, coupled with the fact that SRP19 appears relatively rigid and undergoes only minor changes in structure upon RNA binding, may underlie the molecular basis by which SRP19 functions to initiate SRP assembly. | ||
+ | |||
+ | Solution structure of protein SRP19 of Archaeoglobus fulgidus signal recognition particle.,Pakhomova ON, Deep S, Huang Q, Zwieb C, Hinck AP J Mol Biol. 2002 Mar 15;317(1):145-58. PMID:11916385<ref>PMID:11916385</ref> | ||
+ | |||
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
+ | <div class="pdbe-citations 1kvv" style="background-color:#fffaf0;"></div> | ||
==See Also== | ==See Also== |
Current revision
Solution Structure Of Protein SRP19 Of The Archaeoglobus fulgidus Signal Recognition Particle, Minimized Average Structure
|