1lcc

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (08:46, 22 May 2024) (edit) (undo)
 
Line 20: Line 20:
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1lcc ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1lcc ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
The structure of the complex of lac repressor headpiece and an 11 base-pair lac half-operator has been determined by NMR spectroscopy and restrained Molecular Dynamics calculations. In total 508 distances were derived from two-dimensional nuclear Overhauser enhancement measurements, 260 of which are within the headpiece, 212 within the operator and 36 between operator and headpiece. An equilibrium restrained Molecular Dynamics calculation of the complex in aqueous solution, spanning 85 picoseconds, has been used to analyze the structure. Configuration sampling by an annealing procedure has been undertaken as well in order to estimate the precision of the structure determination. Our data confirm the results of previous two-dimensional NMR studies that the orientation of the recognition helix of lac repressor in the major groove of DNA with respect to the operator dyad axis is opposite to the orientation found in complexes of other DNA binding proteins of the helix-turn-helix class. We find a number of tight contacts between the protein and the operator that are in agreement with the available genetic and biochemical data. The anchoring of lac headpiece on the operator is similar to that of other repressors. Other features are unique for lac headpiece: relative few direct hydrogen bonds between side-chains and bases; extensive apolar contacts; many direct and water-bridged contacts to phosphates from residues in or close to the recognition helix. Overall, an interconnected set of interactions is observed, involving base-specific contacts, phosphate contacts, intra-protein and water-bridged hydrogen bonds. Several of these interactions appear to be dynamic, i.e. fluctuating in time, rather than static.
 +
 +
Structure of the complex of lac repressor headpiece and an 11 base-pair half-operator determined by nuclear magnetic resonance spectroscopy and restrained molecular dynamics.,Chuprina VP, Rullmann JA, Lamerichs RM, van Boom JH, Boelens R, Kaptein R J Mol Biol. 1993 Nov 20;234(2):446-62. PMID:8230225<ref>PMID:8230225</ref>
 +
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 1lcc" style="background-color:#fffaf0;"></div>
==See Also==
==See Also==
*[[Lac repressor|Lac repressor]]
*[[Lac repressor|Lac repressor]]
 +
== References ==
 +
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>

Current revision

STRUCTURE OF THE COMPLEX OF LAC REPRESSOR HEADPIECE AND AN 11 BASE-PAIR HALF-OPERATOR DETERMINED BY NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY AND RESTRAINED MOLECULAR DYNAMICS

PDB ID 1lcc

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools