1mrr

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (07:02, 30 October 2024) (edit) (undo)
 
Line 15: Line 15:
<jmolCheckbox>
<jmolCheckbox>
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/mr/1mrr_consurf.spt"</scriptWhenChecked>
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/mr/1mrr_consurf.spt"</scriptWhenChecked>
-
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
+
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked>
<text>to colour the structure by Evolutionary Conservation</text>
<text>to colour the structure by Evolutionary Conservation</text>
</jmolCheckbox>
</jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1mrr ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1mrr ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Each polypeptide chain of protein R2, the small subunit of ribonucleotide reductase from Escherichia coli, contains a stable tyrosyl radical and two antiferromagnetically coupled oxo-bridged ferric ions. A refined structure of R2 has been recently obtained. R2 can be converted into apoR2 by chelating out the metal cofactor and scavenging the radical. This study shows that apoR2 has a very strong affinity for four stable Mn2+ ions. The manganese-containing form of R2, named Mn-R2, has been studied by EPR spectroscopy and x-ray crystallography. It contains two binuclear manganese clusters in which the two manganese ions occupy the natural iron-binding sites and are only bridged by carboxylates from glutamates 115 and 238. This in turn explains why the spin-exchange interaction between the two ions is very weak and why Mn-R2 is EPR active. Mn-R2 could provide a model for the native diferrous form of protein R2, and a detailed molecular mechanism for the reduction of the iron center of protein R2 is proposed.
 +
 +
Substitution of manganese for iron in ribonucleotide reductase from Escherichia coli. Spectroscopic and crystallographic characterization.,Atta M, Nordlund P, Aberg A, Eklund H, Fontecave M J Biol Chem. 1992 Oct 15;267(29):20682-8. PMID:1328209<ref>PMID:1328209</ref>
 +
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 1mrr" style="background-color:#fffaf0;"></div>
==See Also==
==See Also==
*[[Ribonucleotide reductase 3D structures|Ribonucleotide reductase 3D structures]]
*[[Ribonucleotide reductase 3D structures|Ribonucleotide reductase 3D structures]]
 +
== References ==
 +
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>

Current revision

SUBSTITUTION OF MANGANESE FOR IRON IN RIBONUCLEOTIDE REDUCTASE FROM ESCHERICHIA COLI. SPECTROSCOPIC AND CRYSTALLOGRAPHIC CHARACTERIZATION

PDB ID 1mrr

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools