1n1c

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (07:03, 30 October 2024) (edit) (undo)
 
Line 15: Line 15:
<jmolCheckbox>
<jmolCheckbox>
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/n1/1n1c_consurf.spt"</scriptWhenChecked>
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/n1/1n1c_consurf.spt"</scriptWhenChecked>
-
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
+
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked>
<text>to colour the structure by Evolutionary Conservation</text>
<text>to colour the structure by Evolutionary Conservation</text>
</jmolCheckbox>
</jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1n1c ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1n1c ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
TorD is the cytoplasmic chaperone involved in the maturation of the molybdoenzyme TorA prior to the translocation of the folded protein into the periplasm. The X-ray structure at 2.4 A resolution of the TorD dimer reveals extreme domain swapping between the two subunits. The all-helical architecture of the globular domains within the intertwined molecular dimer shows no similarity with known protein structures. According to sequence similarities, this new fold probably represents the architecture of the chaperones associated with the bacterial DMSO/TMAO reductases and also that of proteins of yet unknown functions. The occurrence of multiple oligomeric forms and the chaperone activity of both monomeric and dimeric TorD raise questions about the possible biological role of domain swapping in this protein.
 +
 +
A novel protein fold and extreme domain swapping in the dimeric TorD chaperone from Shewanella massilia.,Tranier S, Iobbi-Nivol C, Birck C, Ilbert M, Mortier-Barriere I, Mejean V, Samama JP Structure. 2003 Feb;11(2):165-74. PMID:12575936<ref>PMID:12575936</ref>
 +
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 1n1c" style="background-color:#fffaf0;"></div>
 +
== References ==
 +
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>

Current revision

Crystal Structure Of The Dimeric TorD Chaperone From Shewanella Massilia

PDB ID 1n1c

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools