1p6q
From Proteopedia
(Difference between revisions)
Line 19: | Line 19: | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1p6q ConSurf]. | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1p6q ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | The chemotactic signalling chain to the flagellar motor of Sinorhizobium meliloti features a new type of response regulator, CheY2. CheY2 activated by phosphorylation (CheY2-P) controls the rotary speed of the flagellar motor (instead of reversing the sense of rotation), and it is efficiently dephosphorylated by phospho-retrotransfer to the cognate kinase, CheA. Here, we report the NMR solution structures of the Mg(2+)-complex of inactive CheY2, and of activated CheY2-BeF(3), a stable analogue of CheY2-P, to an overall root mean square deviation of 0.042 nm and 0.027 nm, respectively. The 14 kDa CheY2 protein exhibits a characteristic open (alpha/beta)(5) conformation. Modification of CheY2 by BeF(3)(-) leads to large conformational changes of the protein, which are in the limits of error identical with those observed by phosphorylation of the active-centre residue Asp58. In BeF(3)-activated CheY2, the position of Thr88-OH favours the formation of a hydrogen bond with the active site, Asp58-BeF(3), similar to BeF(3)-activated CheY from Escherichia coli. In contrast to E.coli, this reorientation is not involved in a Tyr-Thr-coupling mechanism, that propagates the signal from the incoming phosphoryl group to the C-terminally located FliM-binding surface. Rather, a rearrangement of the Phe59 side-chain to interact with Ile86-Leu95-Val96 along with a displacement of alpha4 towards beta5 is stabilised in S.meliloti. The resulting, activation-induced, compact alpha4-beta5-alpha5 surface forms a unique binding domain suited for specific interaction with and signalling to a rotary motor that requires a gradual speed control. We propose that these new features of response regulator activation, compared to other two-component systems, are the key for the observed unique phosphorylation, dephosphorylation and motor control mechanisms in S.meliloti. | ||
+ | |||
+ | Solution structures of the inactive and BeF3-activated response regulator CheY2.,Riepl H, Scharf B, Schmitt R, Kalbitzer HR, Maurer T J Mol Biol. 2004 Apr 23;338(2):287-97. PMID:15066432<ref>PMID:15066432</ref> | ||
+ | |||
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
+ | <div class="pdbe-citations 1p6q" style="background-color:#fffaf0;"></div> | ||
+ | == References == | ||
+ | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> |
Current revision
NMR Structure of the Response regulator CheY2 from Sinorhizobium meliloti, complexed with Mg++
|