1pux

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (09:00, 22 May 2024) (edit) (undo)
 
Line 19: Line 19:
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1pux ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1pux ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Two-component systems, which are comprised of a single histidine-aspartate phosphotransfer module, are the dominant signaling pathways in bacteria and have recently been identified in several eukaryotic organisms as well. A tandem connection of two or more histidine-aspartate motifs forms complex phosphorelays. While response regulators from simple two-component systems have been characterized structurally in their inactive and active forms, we address here the question of whether a response regulator from a phosphorelay has a distinct structural basis of activation. We report the NMR solution structure of BeF(3)(-)-activated Spo0F, the first structure of a response regulator from a phosphorelay in its activated state. Conformational changes were found in regions previously identified to change in simple two-component systems. In addition, a downward shift by half a helical turn in helix 1, located on the opposite side of the common activation surface, was observed as a consequence of BeF(3)(-) activation. Conformational changes in helix 1 can be rationalized by the distinct function of phosphoryl transfer to the second histidine kinase, Spo0B, because helix 1 is known to interact directly with Spo0B and the phosphatase RapB. The identification of structural rearrangements in Spo0F supports the hypothesis of a pre-existing equilibrium between the inactive and active state prior to phosphorylation that was suggested on the basis of previous NMR dynamics studies on Spo0F. A shift of a pre-existing equilibrium is likely a general feature of response regulators.
 +
 +
The NMR solution structure of BeF(3)(-)-activated Spo0F reveals the conformational switch in a phosphorelay system.,Gardino AK, Volkman BF, Cho HS, Lee SY, Wemmer DE, Kern D J Mol Biol. 2003 Aug 1;331(1):245-54. PMID:12875849<ref>PMID:12875849</ref>
 +
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 1pux" style="background-color:#fffaf0;"></div>
==See Also==
==See Also==
*[[Phosphotransferase 3D structures|Phosphotransferase 3D structures]]
*[[Phosphotransferase 3D structures|Phosphotransferase 3D structures]]
 +
== References ==
 +
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>

Current revision

NMR Solution Structure of BeF3-Activated Spo0F, 20 conformers

PDB ID 1pux

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools