1sa8

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (09:07, 22 May 2024) (edit) (undo)
 
Line 19: Line 19:
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1sa8 ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1sa8 ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Intestinal fatty acid-binding protein (I-FABP) has a clam-shaped structure that may serve as a scaffold for the design of artificial enzymes and drug carriers. In an attempt to optimize the scaffold for increased access to the interior-binding cavity, several helix-less variants of I-FABP have been engineered. The solution-state NMR structure of the first generation helix-less variant, known as Delta17-SG, revealed a larger-than-expected and structurally ill-defined loop flanking the deletion site. We hypothesized that the presence of this loop, on balance, was energetically unfavorable for the stability of the protein. The structure exhibited no favorable pairwise or nonpolar interactions in the loop that could offset the loss of configurational entropy associated with the folding of this region of the protein. As an attempt to generate a more stable protein, we engineered a second-generation helix-less variant of I-FABP (Delta27-GG) by deleting 27 contiguous residues of the wild-type protein and replacing them with a G-G linker. The deletion site of this variant (D9 through N35) includes the 10 residues spanning the unstructured loop of Delta17-SG. Chemical denaturation experiments using steady-state fluorescence spectroscopy showed that the second-generation helix-less variant is energetically more stable than Delta17-SG. The three-dimensional structure of apo-Delta27-GG was solved using triple-resonance NMR spectroscopy along with the structure calculation and refinement protocols contained in the program package ARIA/CNS. In spite of the deletion of 27 residues, the structure assumes a compact all-beta-sheet fold with no unstructured loops and open access to the interior cavity.
 +
 +
The NMR structure of a stable and compact all-beta-sheet variant of intestinal fatty acid-binding protein.,Ogbay B, Dekoster GT, Cistola DP Protein Sci. 2004 May;13(5):1227-37. PMID:15096629<ref>PMID:15096629</ref>
 +
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 1sa8" style="background-color:#fffaf0;"></div>
==See Also==
==See Also==
*[[Fatty acid-binding protein 3D structures|Fatty acid-binding protein 3D structures]]
*[[Fatty acid-binding protein 3D structures|Fatty acid-binding protein 3D structures]]
 +
== References ==
 +
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>

Current revision

THE NMR STRUCTURE OF A STABLE AND COMPACT ALL-beta-SHEET VARIANT OF INTESTINAL FATTY ACID-BINDING PROTEIN

PDB ID 1sa8

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools