1t7s
From Proteopedia
(Difference between revisions)
Line 15: | Line 15: | ||
<jmolCheckbox> | <jmolCheckbox> | ||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/t7/1t7s_consurf.spt"</scriptWhenChecked> | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/t7/1t7s_consurf.spt"</scriptWhenChecked> | ||
- | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/ | + | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> |
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
</jmolCheckbox> | </jmolCheckbox> | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1t7s ConSurf]. | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1t7s ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Binding of the BAG domain to the eukaryotic chaperone heat-shock protein (Hsp70) promotes ATP-dependent release of the protein substrate from Hsp70. Although the murine and human BAG domains have been shown to form an antiparallel three-helix bundle, the Caenorhabditis elegans BAG domain is formed by two antiparallel helices, while the third helix is extended away and stabilized by crystal-packing interactions. A small beta-sheet between helices 2 and 3 interferes with formation of the intramolecular three-helix bundle. However, intermolecular three-helix bundles are observed throughout the crystal packing and suggest that stable functional dimers and tetramers can be formed in solution. The structure may represent a new folding type of the BAG domain. | ||
+ | |||
+ | Structural genomics of Caenorhabditis elegans: structure of the BAG domain.,Symersky J, Zhang Y, Schormann N, Li S, Bunzel R, Pruett P, Luan CH, Luo M Acta Crystallogr D Biol Crystallogr. 2004 Sep;60(Pt 9):1606-10. Epub 2004, Aug 26. PMID:15333932<ref>PMID:15333932</ref> | ||
+ | |||
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
+ | <div class="pdbe-citations 1t7s" style="background-color:#fffaf0;"></div> | ||
==See Also== | ==See Also== | ||
*[[BAG family proteins 3D structures|BAG family proteins 3D structures]] | *[[BAG family proteins 3D structures|BAG family proteins 3D structures]] | ||
+ | == References == | ||
+ | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> |
Current revision
Structural Genomics of Caenorhabditis elegans: Structure of BAG-1 protein
|
Categories: Caenorhabditis elegans | Large Structures | Bunzel R | Li S | Luan C-H | Luo M | Pruett P | Schormann N | Symersky J | Zhang Y