User:Eduardo Araujo Silva/Sandbox 1
From Proteopedia
(Difference between revisions)
												
			
			| Line 8: | Line 8: | ||
| == Structural highlights == | == Structural highlights == | ||
| - | In the absence of an ORx, Orco is capable of forming a <scene name='10/1050291/Homotetramer/1'>homotetramer</scene>, with four subunits encircling a channel. Each <scene name='10/1050291/Subunit/1'>subunit</scene> is composed of 7 transmembrane domains (S1-S7), an intracellular <FONT COLOR="blue">'''N-terminus'''</FONT> and an extracellular <FONT COLOR="red">'''C-terminus'''</FONT>. <scene name='10/1050291/S7/ | + | In the absence of an ORx, Orco is capable of forming a <scene name='10/1050291/Homotetramer/1'>homotetramer</scene>, with four subunits encircling a channel. Each <scene name='10/1050291/Subunit/1'>subunit</scene> is composed of 7 transmembrane domains (S1-S7), an intracellular <FONT COLOR="blue">'''N-terminus'''</FONT> and an extracellular <FONT COLOR="red">'''C-terminus'''</FONT>. <scene name='10/1050291/S7/2'>S7</scene> is divided into a cytoplasmic helix (S7a) and a transmembrane helix (S7b), separated by a 15-residue β-hairpin loop. The majority of the protein is intramembranous, while <scene name='10/1050291/Small_loops/2'>small loops</scene> are exposed to the extracellular environment, and a small intracellular domain, called the anchor domain, extends into the cytoplasm. The anchor domain is named as such because its where the majority of <scene name='10/1050291/Inter-subunit_interaction/2'>inter-subunit interactions</scene> resides and thus 'anchoring' the subunits within the lipid membrane. In the core of the anchor domain is S7a surrounded by S4, S5 and S6. The S1-S6 domains of each subunit are narrowly tethered to their respective S7b helix and are separated from the domains of the other subunits. Each subunit contributes with a <scene name='10/1050291/S7b/2'>S7b helix</scene> that lines the ion-conduction pathway. The pore is narrowest near the extracellular end, where two residues, Leu 473 and Val 469, forms a <scene name='10/1050291/Constriction/2'>constriction</scene>, preventing the passage of hydrated ions, which characterizes its closed state <ref>PMID: 30111839</ref>. | 
| </StructureSection> | </StructureSection> | ||
| == References == | == References == | ||
| <references/> | <references/> | ||
Revision as of 02:39, 2 June 2024
Orco (6c70)
| 
 | |||||||||||
References
- ↑ Larsson MC, Domingos AI, Jones WD, Chiappe ME, Amrein H, Vosshall LB. Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron. 2004 Sep 2;43(5):703-14. PMID:15339651 doi:http://dx.doi.org/10.1016/j.neuron.2004.08.019
- ↑ Jones WD, Nguyen TA, Kloss B, Lee KJ, Vosshall LB. Functional conservation of an insect odorant receptor gene across 250 million years of evolution. Curr Biol. 2005 Feb 22;15(4):R119-21. PMID:15723778 doi:10.1016/j.cub.2005.02.007
- ↑ Benton R, Sachse S, Michnick SW, Vosshall LB. Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLoS Biol. 2006 Feb;4(2):e20. PMID:16402857 doi:10.1371/journal.pbio.0040020
- ↑ Larsson MC, Domingos AI, Jones WD, Chiappe ME, Amrein H, Vosshall LB. Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron. 2004 Sep 2;43(5):703-14. PMID:15339651 doi:http://dx.doi.org/10.1016/j.neuron.2004.08.019
- ↑ Jones PL, Pask GM, Rinker DC, Zwiebel LJ. Functional agonism of insect odorant receptor ion channels. Proc Natl Acad Sci U S A. 2011 May 24;108(21):8821-5. PMID:21555561 doi:10.1073/pnas.1102425108
- ↑ Butterwick JA, Del Marmol J, Kim KH, Kahlson MA, Rogow JA, Walz T, Ruta V. Cryo-EM structure of the insect olfactory receptor Orco. Nature. 2018 Aug;560(7719):447-452. doi: 10.1038/s41586-018-0420-8. Epub 2018 Aug, 15. PMID:30111839 doi:http://dx.doi.org/10.1038/s41586-018-0420-8
