We apologize for Proteopedia being slow to respond. For the past two years, a new implementation of Proteopedia has been being built. Soon, it will replace this 18-year old system. All existing content will be moved to the new system at a date that will be announced here.
User:Karsten Theis/turns
From Proteopedia
(Difference between revisions)
| Line 1: | Line 1: | ||
A '''beta turn''' is a secondary structure element consisting of four consecutive amino acids (or three consecutive peptide planes). The geometry of turns correspond to a change in the direction of the polypeptide backbone, with a short distance between the first and fourth alpha carbon. | A '''beta turn''' is a secondary structure element consisting of four consecutive amino acids (or three consecutive peptide planes). The geometry of turns correspond to a change in the direction of the polypeptide backbone, with a short distance between the first and fourth alpha carbon. | ||
| - | == | + | ==Concepts you can explore here== |
# A beta turn is a secondary structure element distinct from (but sometimes overlapping with) alpha helices and beta strands | # A beta turn is a secondary structure element distinct from (but sometimes overlapping with) alpha helices and beta strands | ||
Revision as of 23:05, 13 February 2025
A beta turn is a secondary structure element consisting of four consecutive amino acids (or three consecutive peptide planes). The geometry of turns correspond to a change in the direction of the polypeptide backbone, with a short distance between the first and fourth alpha carbon.
Concepts you can explore here
- A beta turn is a secondary structure element distinct from (but sometimes overlapping with) alpha helices and beta strands
- Beta turns consist of stretches of four amino acids making a sharp turn, with a short distance between the first and last alpha carbon
- Beta turns typically occur near the surface of globular proteins, often connecting helices and strands
- There are multiple types of beta turns, distinguished by the torsion angles of the second and third residue
- Glycine and proline occur relatively often in beta turns and play distinct special roles
See the discussion tab for learning and teaching notes.
Turns in 3D
| |||||||||||
Further reading
- Turns in Proteins
- [betaturn.com] allows you to brows a protein database for turns of different types
References
- ↑ de Brevern AG. A Perspective on the (Rise and Fall of) Protein β-Turns. Int J Mol Sci. 2022 Oct 14;23(20):12314. PMID:36293166 doi:10.3390/ijms232012314
- ↑ Wilmot CM, Thornton JM. Analysis and prediction of the different types of beta-turn in proteins. J Mol Biol. 1988 Sep 5;203(1):221-32. PMID:3184187 doi:10.1016/0022-2836(88)90103-9
