Sandbox Reserved 1846

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 62: Line 62:
N246M
N246M
-
The original side chain of asparagine, with two options of mutations with aspartic acid and methionine. These mutations are also to increase thermostability. With the wild-type having a melting point of 84.7 degree Celsius. The mutation to aspartic acid, which replaces a polar and neutral side chain with a negatively charged side chain. This likely introduces more electrostatic interactions or salt bridges that help stabilize the protein structure. Taking the N246D mutation with a melting point of 87.9 degree Celsius. While the mutation replaces the original with a hydrophobic amino acid side chain. This introduces a bulkier and hydrophobic side chain, which will strengthen the internal packing of the core of the protein. This leads for the N246M had a melting point of 88.0 degree Celsius.
+
The asparagine side chain is mutated to aspartic acid and methionine to increase thermostability. The wild-type protein has a melting point of 84.7°C. The N246D mutation (asparagine to aspartic acid) replaces a polar neutral side chain with a negatively charged one, which potentially increases electrostatic interactions or salt bridges that stabilize the protein. This results in a melting point of 87.9°C. The N246M mutation (asparagine to methionine) introduces a bulkier, hydrophobic side chain. This increases the internal packing of the protein core. This mutant has a melting point of 88.0°C. These mutations are designed to improve the protein's performance in plastic degradation by increasing its thermal stability.
=== S283 & D238 ===
=== S283 & D238 ===

Revision as of 18:26, 10 April 2025

This Sandbox is Reserved from March 18 through September 1, 2025 for use in the course CH462 Biochemistry II taught by R. Jeremy Johnson and Mark Macbeth at the Butler University, Indianapolis, USA. This reservation includes Sandbox Reserved 1828 through Sandbox Reserved 1846.
To get started:
  • Click the edit this page tab at the top. Save the page after each step, then edit it again.
  • show the Scene authoring tools, create a molecular scene, and save it. Copy the green link into the page.
  • Add a description of your scene. Use the buttons above the wikitext box for bold, italics, links, headlines, etc.

More help: Help:Editing

Leaf Branch Compost Cutinase

Original Structure of LCC

Drag the structure with the mouse to rotate

References

  1. 1.0 1.1 Tournier V, Topham CM, Gilles A, David B, Folgoas C, Moya-Leclair E, Kamionka E, Desrousseaux ML, Texier H, Gavalda S, Cot M, Guemard E, Dalibey M, Nomme J, Cioci G, Barbe S, Chateau M, Andre I, Duquesne S, Marty A. An engineered PET depolymerase to break down and recycle plastic bottles. Nature. 2020 Apr;580(7802):216-219. doi: 10.1038/s41586-020-2149-4. Epub 2020 Apr, 8. PMID:32269349 doi:http://dx.doi.org/10.1038/s41586-020-2149-4
  2. Kolattukudy PE. Biopolyester membranes of plants: cutin and suberin. Science. 1980 May 30;208(4447):990-1000. PMID:17779010 doi:10.1126/science.208.4447.990
  3. Burgin T, Pollard BC, Knott BC, Mayes HB, Crowley MF, McGeehan JE, Beckham GT, Woodcock HL. The reaction mechanism of the Ideonella sakaiensis PETase enzyme. Commun Chem. 2024 Mar 27;7(1):65. PMID:38538850 doi:10.1038/s42004-024-01154-x
  4. Landrigan PJ, Stegeman JJ, Fleming LE, Allemand D, Anderson DM, Backer LC, Brucker-Davis F, Chevalier N, Corra L, Czerucka D, Bottein MD, Demeneix B, Depledge M, Deheyn DD, Dorman CJ, Fénichel P, Fisher S, Gaill F, Galgani F, Gaze WH, Giuliano L, Grandjean P, Hahn ME, Hamdoun A, Hess P, Judson B, Laborde A, McGlade J, Mu J, Mustapha A, Neira M, Noble RT, Pedrotti ML, Reddy C, Rocklöv J, Scharler UM, Shanmugam H, Taghian G, van de Water JAJM, Vezzulli L, Weihe P, Zeka A, Raps H, Rampal P. Human Health and Ocean Pollution. Ann Glob Health. 2020 Dec 3;86(1):151. PMID:33354517 doi:10.5334/aogh.2831
  5. Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A, Narayan R, Law KL. Marine pollution. Plastic waste inputs from land into the ocean. Science. 2015 Feb 13;347(6223):768-71. PMID:25678662 doi:10.1126/science.1260352

Student Contributors

Ashley Callaghan Rebecca Hoff Simone McCowan

Personal tools