Sandbox Reserved 1846

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 38: Line 38:
F243W
F243W
-
The original side chain is phenylalanine side chain, is located 3.6 Angstroms from the ligand. There are two main mutations isoleucine and tryptophan. Isoleucine is a smaller molecule and makes a tighter bond in the ligand, with the distance being 3.0 Angstrom. This allows for more efficient interactions with the ligand, likely improving substrate binding and catalytic efficiency. The other is tryptophan, which is a bulkier side chain, which does have a slightly shorter difference of 3.2 Angstroms, while being a larger side chain. The effect that is has is more based on that tryptophan is a nitrogen-containing aromatic ring, which offers new interactions with the substrate, which could also affect enzyme's binding and catalytic properties.
+
The original side chain at position 243 is phenylalanine, which is located 3.6 Å from the ligand. Two mutations at this position—F243I (isoleucine) and F243W (tryptophan)—increase the catalytic activity of the enzyme. The F243I mutation replaces phenylalanine with isoleucine, a smaller side chain that allows the ligand to sit closer. This reduces the ligand distance to 3.0 Å. This tighter interaction likely improves substrate binding. The F243W mutation introduces tryptophan, which has a bulkier, nitrogen-containing aromatic side chain. Tryptophan brings the ligand slightly closer at 3.2 Å and introduces potential for new interactions, such as hydrogen bonding or π-stacking. Both mutations result in improved catalytic performance. The F243I mutation leads to a 27.5% increase in activity, while the F243W mutation results in a 17.5% increase, compared to the wild-type enzyme.
-
These two mutations both lead to an increase in catalytic activity from the mutation, F243I had a 27.5% increase and F243W had an 17.5% increase, when compared to the wild-type variant.
+
=== T96 ===
=== T96 ===

Revision as of 18:33, 10 April 2025

This Sandbox is Reserved from March 18 through September 1, 2025 for use in the course CH462 Biochemistry II taught by R. Jeremy Johnson and Mark Macbeth at the Butler University, Indianapolis, USA. This reservation includes Sandbox Reserved 1828 through Sandbox Reserved 1846.
To get started:
  • Click the edit this page tab at the top. Save the page after each step, then edit it again.
  • show the Scene authoring tools, create a molecular scene, and save it. Copy the green link into the page.
  • Add a description of your scene. Use the buttons above the wikitext box for bold, italics, links, headlines, etc.

More help: Help:Editing

Leaf Branch Compost Cutinase

Original Structure of LCC

Drag the structure with the mouse to rotate

References

  1. 1.0 1.1 Tournier V, Topham CM, Gilles A, David B, Folgoas C, Moya-Leclair E, Kamionka E, Desrousseaux ML, Texier H, Gavalda S, Cot M, Guemard E, Dalibey M, Nomme J, Cioci G, Barbe S, Chateau M, Andre I, Duquesne S, Marty A. An engineered PET depolymerase to break down and recycle plastic bottles. Nature. 2020 Apr;580(7802):216-219. doi: 10.1038/s41586-020-2149-4. Epub 2020 Apr, 8. PMID:32269349 doi:http://dx.doi.org/10.1038/s41586-020-2149-4
  2. Kolattukudy PE. Biopolyester membranes of plants: cutin and suberin. Science. 1980 May 30;208(4447):990-1000. PMID:17779010 doi:10.1126/science.208.4447.990
  3. Burgin T, Pollard BC, Knott BC, Mayes HB, Crowley MF, McGeehan JE, Beckham GT, Woodcock HL. The reaction mechanism of the Ideonella sakaiensis PETase enzyme. Commun Chem. 2024 Mar 27;7(1):65. PMID:38538850 doi:10.1038/s42004-024-01154-x
  4. Landrigan PJ, Stegeman JJ, Fleming LE, Allemand D, Anderson DM, Backer LC, Brucker-Davis F, Chevalier N, Corra L, Czerucka D, Bottein MD, Demeneix B, Depledge M, Deheyn DD, Dorman CJ, Fénichel P, Fisher S, Gaill F, Galgani F, Gaze WH, Giuliano L, Grandjean P, Hahn ME, Hamdoun A, Hess P, Judson B, Laborde A, McGlade J, Mu J, Mustapha A, Neira M, Noble RT, Pedrotti ML, Reddy C, Rocklöv J, Scharler UM, Shanmugam H, Taghian G, van de Water JAJM, Vezzulli L, Weihe P, Zeka A, Raps H, Rampal P. Human Health and Ocean Pollution. Ann Glob Health. 2020 Dec 3;86(1):151. PMID:33354517 doi:10.5334/aogh.2831
  5. Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A, Narayan R, Law KL. Marine pollution. Plastic waste inputs from land into the ocean. Science. 2015 Feb 13;347(6223):768-71. PMID:25678662 doi:10.1126/science.1260352

Student Contributors

Ashley Callaghan Rebecca Hoff Simone McCowan

Personal tools