User:Eduarda Franco Marcolino/Sandbox 1
From Proteopedia
(Difference between revisions)
Line 13: | Line 13: | ||
MsrA deficiency exacerbates ischemia/reperfusion (I/R)-induced acute kidney injury. The absence of MsrA leads to increased oxidative stress and inflammatory responses in the kidneys, since oxidative stress and inflammation are key factors in the progression of renal fibrosis. MsrA plays an important role in protecting kidney function in chronic kidney diseases associated with fibrosis. | MsrA deficiency exacerbates ischemia/reperfusion (I/R)-induced acute kidney injury. The absence of MsrA leads to increased oxidative stress and inflammatory responses in the kidneys, since oxidative stress and inflammation are key factors in the progression of renal fibrosis. MsrA plays an important role in protecting kidney function in chronic kidney diseases associated with fibrosis. | ||
+ | |||
== Relevance == | == Relevance == | ||
+ | The oxidation of methionine to methionine sulfoxide, Met(O), has been implicated in a variety of neurodegenerative diseases, emphysema, cataractogenesis, and rheumatoid arthritis. At the same time, the readily oxidizable nature of surface methionines suggests that these may act as an endogenous oxidant defense system. Other studies indicate that Met oxidation and/or reduction is involved in regulating potassium channel function and other cellular signaling mechanisms. | ||
+ | |||
+ | The reduction of Met(O) to Met, both as the free amino acid and when incorporated into proteins, is mediated by peptide methionine sulfoxide reductase (MsrA). This enzyme is a member of the minimal gene set required for life and is found in all mammalian tissues, with the highest levels in the cerebellum and kidney. The sequences of the presumed catalytic domains of the MsrAs are highly conserved [e.g., human, Escherichia coli, and yeast MsrAs are 88, 60, and 34% identical to bovine MsrA (bMsrA), respectively]. MsrA has the ability to provide protection against oxidative stress in vivo. | ||
== Structural highlights == | == Structural highlights == |
Revision as of 03:19, 11 June 2025
Bovine methionine sulfoxide reductase
|
References
Kim, G. et al. (2010). Methionine sulfoxide reductase A deficiency exacerbates progression of kidney fibrosis induced by unilateral ureteral obstruction. Free Radical Biology and Medicine. doi: 10.1016/j.freeradbiomed.2015.07.018.
Lowther, W. T, et al. “Structure and Mechanism of Peptide Methionine Sulfoxide Reductase, an “Anti-Oxidation” Enzyme,.” Biochemistry, vol. 39, no. 44, 13 Oct. 2000, pp. 13307–13312, https://doi.org/10.1021/bi0020269.
Moskovitz, J. et al. (2001). Methionine sulfoxide reductase (MsrA) is a regulator of antioxidant defense and lifespan in mammals. doi: 10.1073/pnas.231472998
- ↑ Hanson, R. M., Prilusky, J., Renjian, Z., Nakane, T. and Sussman, J. L. (2013), JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia. Isr. J. Chem., 53:207-216. doi:http://dx.doi.org/10.1002/ijch.201300024
- ↑ Herraez A. Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ. 2006 Jul;34(4):255-61. doi: 10.1002/bmb.2006.494034042644. PMID:21638687 doi:10.1002/bmb.2006.494034042644