Main Page

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (16:30, 30 September 2025) (edit) (undo)
 
Line 1: Line 1:
-
<div style="overflow:auto;">
+
<table id="tableColumnsMainPage" style="width:100%;border:2px solid #ddd;border-collapse: collapse;table-layout: fixed; ">
-
<table id="tableColumnsMainPage" style="width:100%; border:2px solid #ddd; border-collapse: collapse; table-layout: fixed; ">
+
<tr><td colspan='3' style="background:#F5F5FC;border:1px solid #ddd;">
-
<tr><td colspan='3' style="background:#F5F5FC; border:1px solid #ddd;">
+
-
 
+
<div style="top:+0.2em; font-size:1.2em; padding:5px 5px 5px 10px; float:right;">'''''ISSN 2310-6301'''''</div>
<div style="top:+0.2em; font-size:1.2em; padding:5px 5px 5px 10px; float:right;">'''''ISSN 2310-6301'''''</div>
Line 12: Line 10:
<b>Proteopedia</b> presents this information in a user-friendly way as a '''collaborative & free 3D-encyclopedia of proteins & other biomolecules.'''
<b>Proteopedia</b> presents this information in a user-friendly way as a '''collaborative & free 3D-encyclopedia of proteins & other biomolecules.'''
</span>
</span>
 +
</td></tr>
</td></tr>
Line 32: Line 31:
<td style="padding: 10px;background-color: #79baff"></td>
<td style="padding: 10px;background-color: #79baff"></td>
</tr>
</tr>
 +
<tr style="font-size: 1.0em; text-align: center;">
<tr style="font-size: 1.0em; text-align: center;">
-
<td style="padding: 10px;">
+
<td style="padding: 10px;>
<p>[[Help:Contents#For_authors:_contributing_content|How to add content to Proteopedia]]</p>
<p>[[Help:Contents#For_authors:_contributing_content|How to add content to Proteopedia]]</p>
<p>[[Proteopedia:Video_Guide|Video Guides]]</p>
<p>[[Proteopedia:Video_Guide|Video Guides]]</p>
Line 41: Line 41:
</td>
</td>
-
<td style="padding: 10px;">
+
<td style="padding: 10px;>
<p>[[I3DC|About Interactive 3D Complements - '''I3DCs''']]</p>
<p>[[I3DC|About Interactive 3D Complements - '''I3DCs''']]</p>
<p>[[Proteopedia:I3DC|List of I3DCs]]</p>
<p>[[Proteopedia:I3DC|List of I3DCs]]</p>
<p>[[How to get an I3DC for your paper]]</p>
<p>[[How to get an I3DC for your paper]]</p>
 +
</td>
</td>
-
<td style="padding: 10px;">
+
<td style="padding: 10px;>
<p>[[Teaching strategies using Proteopedia]]</p>
<p>[[Teaching strategies using Proteopedia]]</p>
<p>[[Teaching_Scenes%2C_Tutorials%2C_and_Educators%27_Pages|Examples of pages for teaching]]</p>
<p>[[Teaching_Scenes%2C_Tutorials%2C_and_Educators%27_Pages|Examples of pages for teaching]]</p>
Line 66: Line 67:
</td></tr>
</td></tr>
</table>
</table>
-
</div>
 

Current revision

ISSN 2310-6301

As life is more than 2D, Proteopedia helps to bridge the gap between 3D structure & function of biomacromolecules

Proteopedia presents this information in a user-friendly way as a collaborative & free 3D-encyclopedia of proteins & other biomolecules.


Selected Research Pages In Journals Education
About this image
Bacteria float with nano-balloons.

ST Huber, D Terwiel, WH Evers, D Maresca, AJ Jakobi. Preprint 2022 doi: 10.1101/2022.05.08.489936
Many kinds of bacteria and archaea control their buoyancy to move to optimal positions in liquid environments. They do this by making nano-compartments called "gas vesicles", long "pipes" with closed ends filled with gases. In 2022, gas vesicle structure was solved, revealing self-assembling thin-walled cylinders of remarkable strength with gas-permeable pores and water-repelling (hydrophobic) interiors. Building on this structural knowledge, gas vesicles are being engineered to serve as biosensors that report via ultrasound.

>>> Visit I3DC Interactive Visualizations >>>

About this image
Geobacter nanowire structure surprise.

F Wang, Y Gu, JP O'Brien, SM Yi, SE Yalcin, V Srikanth, C Shen, D Vu, NL Ing, AI Hochbaum, EH Egelman, NS Malvankar. Cell 2019 doi: 10.1016/j.cell.2019.03.029
Bacteria living in anaerobic environments (no oxygen) need alternative electron acceptors in order to get energy from their food. An acceptor abundant in the earth's crust is red iron oxide ("rust"), which gets reduced to black iron oxide (magnetite). Many bacteria, such as Geobacter, get their metabolic energy by transferring electrons to acceptors that are multiple cell diameters distant, using protein nanowires. These were long thought to be pili. But when the structure of the nanowires was solved in 2019, to everyone's surprise, they turned out to be unprecedented linear polymers of multi-heme cytochromes. The hemes form an electrically conductive chain in the cores of these nanowires.

>>> Visit I3DC Interactive Visualizations >>>

About this image
Virus Capsid Geometry

The Capsid of a virus is its outer shell or "skin". Viruses have evolved intricate and elegant ways to assemble capsid protein chains into complete, usually spherical capsids, often with icosahedral symmetry. Pictured is an extremely simplified model of a capsid, where a single enlarged atom represents each of the 360 protein chains in the capsid of the Simian Virus 40 (SV40), a member of a group of cancer-causing viruses that has been extensively researched for decades.

>>> See more animations and explanation >>>

How to add content to Proteopedia

Video Guides

Who knows ...

About Interactive 3D Complements - I3DCs

List of I3DCs

How to get an I3DC for your paper

Teaching strategies using Proteopedia

Examples of pages for teaching

How to add content to Proteopedia

About Contact Hot News Table of Contents Structure Index Help

Proteopedia Page Contributors and Editors (what is this?)

Joel L. Sussman, Jaime Prilusky

Personal tools