From Proteopedia
(Difference between revisions)
proteopedia linkproteopedia link
|
|
Line 1: |
Line 1: |
- | [[Image:2e1f.jpg|left|200px]] | + | {{Seed}} |
| + | [[Image:2e1f.png|left|200px]] |
| | | |
| <!-- | | <!-- |
Line 9: |
Line 10: |
| {{STRUCTURE_2e1f| PDB=2e1f | SCENE= }} | | {{STRUCTURE_2e1f| PDB=2e1f | SCENE= }} |
| | | |
- | '''Crystal structure of the HRDC Domain of Human Werner Syndrome Protein, WRN'''
| + | ===Crystal structure of the HRDC Domain of Human Werner Syndrome Protein, WRN=== |
| | | |
| | | |
- | ==Overview==
| + | <!-- |
- | Werner syndrome is a human premature aging disorder characterized by chromosomal instability. The disease is caused by the functional loss of WRN, a member of the RecQ-helicase family that plays an important role in DNA metabolic pathways. WRN contains four structurally folded domains comprising an exonuclease, a helicase, a winged-helix, and a helicase-and-ribonuclease D/C-terminal (HRDC) domain. In contrast to the accumulated knowledge pertaining to the biochemical functions of the three N-terminal domains, the function of C-terminal HRDC remains unknown. In this study, the crystal structure of the human WRN HRDC domain has been determined. The domain forms a bundle of alpha-helices similar to those of Saccharomyces cerevisiae Sgs1 and Escherichia coli RecQ. Surprisingly, the extra ten residues at each of the N and C termini of the domain were found to participate in the domain architecture by forming an extended portion of the first helix alpha1, and a novel looping motif that traverses straight along the domain surface, respectively. The motifs combine to increase the domain surface of WRN HRDC, which is larger than that of Sgs1 and E. coli.In WRN HRDC, neither of the proposed DNA-binding surfaces in Sgs1 or E. coli is conserved, and the domain was shown to lack DNA-binding ability in vitro. Moreover, the domain was shown to be thermostable and resistant to protease digestion, implying independent domain evolution in WRN. Coupled with the unique long linker region in WRN, the WRN HRDC may be adapted to play a distinct function in WRN that involves protein-protein interactions.
| + | The line below this paragraph, {{ABSTRACT_PUBMED_17148451}}, adds the Publication Abstract to the page |
| + | (as it appears on PubMed at http://www.pubmed.gov), where 17148451 is the PubMed ID number. |
| + | --> |
| + | {{ABSTRACT_PUBMED_17148451}} |
| | | |
| ==About this Structure== | | ==About this Structure== |
Line 26: |
Line 30: |
| [[Category: Yoshihara, N.]] | | [[Category: Yoshihara, N.]] |
| [[Category: Hrdc domain]] | | [[Category: Hrdc domain]] |
- | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Sun May 4 01:45:08 2008'' | + | |
| + | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Sun Jul 27 20:21:38 2008'' |
Revision as of 17:21, 27 July 2008
Template:STRUCTURE 2e1f
Crystal structure of the HRDC Domain of Human Werner Syndrome Protein, WRN
Template:ABSTRACT PUBMED 17148451
About this Structure
2E1F is a Single protein structure of sequence from Homo sapiens. Full crystallographic information is available from OCA.
Reference
Crystal structure of the HRDC domain of human Werner syndrome protein, WRN., Kitano K, Yoshihara N, Hakoshima T, J Biol Chem. 2007 Jan 26;282(4):2717-28. Epub 2006 Dec 4. PMID:17148451
Page seeded by OCA on Sun Jul 27 20:21:38 2008