2med
From Proteopedia
(New page: 200px<br /> <applet load="2med" size="450" color="white" frame="true" align="right" spinBox="true" caption="2med, resolution 1.8Å" /> '''CONTRIBUTION OF HYDR...) |
|||
Line 1: | Line 1: | ||
- | [[Image:2med.gif|left|200px]]<br /> | + | [[Image:2med.gif|left|200px]]<br /><applet load="2med" size="350" color="white" frame="true" align="right" spinBox="true" |
- | <applet load="2med" size=" | + | |
caption="2med, resolution 1.8Å" /> | caption="2med, resolution 1.8Å" /> | ||
'''CONTRIBUTION OF HYDROPHOBIC EFFECT TO THE CONFORMATIONAL STABILITY OF HUMAN LYSOZYME'''<br /> | '''CONTRIBUTION OF HYDROPHOBIC EFFECT TO THE CONFORMATIONAL STABILITY OF HUMAN LYSOZYME'''<br /> | ||
==Overview== | ==Overview== | ||
- | To elucidate correlative relationships between structural change and | + | To elucidate correlative relationships between structural change and thermodynamic stability in proteins, a series of mutant human lysozymes modified at two buried positions (Ile56 and Ile59) were examined. Their thermodynamic parameters of denaturation and crystal structures were studied by calorimetry and X-ray crystallography. The mutants at positions 56 and 59 exhibited different responses to a series of amino acid substitutions. The changes in stability due to substitutions showed a linear correlation with changes in hydrophobicity of substituted residues, having different slopes at each mutation site. However, the stability of each mutant was found to be represented by a unique equation involving physical properties calculated from mutant structures. By fitting present and previous stability data for mutant human lysozymes substituted at various positions to the equation, the magnitudes of the hydrophobicity of a carbon atom and the hydrophobicity of nitrogen and neutral oxygen atoms were found to be 0.178 and -0.013 kJ/mol.A(2), respectively. It was also found that the contribution of a hydrogen bond with a length of 3.0 A to protein stability was 5.1 kJ/mol and the entropy loss of newly introduction of a water molecules was 7.8 kJ/mol. |
==Disease== | ==Disease== | ||
Line 11: | Line 10: | ||
==About this Structure== | ==About this Structure== | ||
- | 2MED is a [http://en.wikipedia.org/wiki/Single_protein Single protein] structure of sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] with NA as [http://en.wikipedia.org/wiki/ligand ligand]. Active as [http://en.wikipedia.org/wiki/Lysozyme Lysozyme], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.2.1.17 3.2.1.17] Full crystallographic information is available from [http:// | + | 2MED is a [http://en.wikipedia.org/wiki/Single_protein Single protein] structure of sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] with <scene name='pdbligand=NA:'>NA</scene> as [http://en.wikipedia.org/wiki/ligand ligand]. Active as [http://en.wikipedia.org/wiki/Lysozyme Lysozyme], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.2.1.17 3.2.1.17] Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2MED OCA]. |
==Reference== | ==Reference== | ||
Line 29: | Line 28: | ||
[[Category: o-glycosyl]] | [[Category: o-glycosyl]] | ||
- | ''Page seeded by [http:// | + | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Feb 21 18:07:28 2008'' |
Revision as of 16:07, 21 February 2008
|
CONTRIBUTION OF HYDROPHOBIC EFFECT TO THE CONFORMATIONAL STABILITY OF HUMAN LYSOZYME
Contents |
Overview
To elucidate correlative relationships between structural change and thermodynamic stability in proteins, a series of mutant human lysozymes modified at two buried positions (Ile56 and Ile59) were examined. Their thermodynamic parameters of denaturation and crystal structures were studied by calorimetry and X-ray crystallography. The mutants at positions 56 and 59 exhibited different responses to a series of amino acid substitutions. The changes in stability due to substitutions showed a linear correlation with changes in hydrophobicity of substituted residues, having different slopes at each mutation site. However, the stability of each mutant was found to be represented by a unique equation involving physical properties calculated from mutant structures. By fitting present and previous stability data for mutant human lysozymes substituted at various positions to the equation, the magnitudes of the hydrophobicity of a carbon atom and the hydrophobicity of nitrogen and neutral oxygen atoms were found to be 0.178 and -0.013 kJ/mol.A(2), respectively. It was also found that the contribution of a hydrogen bond with a length of 3.0 A to protein stability was 5.1 kJ/mol and the entropy loss of newly introduction of a water molecules was 7.8 kJ/mol.
Disease
Known diseases associated with this structure: Amyloidosis, renal OMIM:[153450], Microphthalmia, syndromic 1 OMIM:[309800]
About this Structure
2MED is a Single protein structure of sequence from Homo sapiens with as ligand. Active as Lysozyme, with EC number 3.2.1.17 Full crystallographic information is available from OCA.
Reference
Contribution of amino acid substitutions at two different interior positions to the conformational stability of human lysozyme., Funahashi J, Takano K, Yamagata Y, Yutani K, Protein Eng. 1999 Oct;12(10):841-50. PMID:10556244
Page seeded by OCA on Thu Feb 21 18:07:28 2008
Categories: Homo sapiens | Lysozyme | Single protein | Funahashi, J. | Takano, K. | Yamagata, Y. | Yutani, K. | NA | Alpha + beta | Enzyme | Glycosidase | Hydrolase | O-glycosyl