2ppf

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
-
[[Image:2ppf.jpg|left|200px]]
+
{{Seed}}
 +
[[Image:2ppf.png|left|200px]]
<!--
<!--
Line 9: Line 10:
{{STRUCTURE_2ppf| PDB=2ppf | SCENE= }}
{{STRUCTURE_2ppf| PDB=2ppf | SCENE= }}
-
'''Reduced mutant D98N of AfNiR exposed to nitric oxide'''
+
===Reduced mutant D98N of AfNiR exposed to nitric oxide===
-
==Overview==
+
<!--
-
Nitrite reductase (NiR) is an enzyme that uses type 1 and type 2 copper sites to reduce nitrite to nitric oxide during bacterial denitrification. A copper-nitrosyl intermediate is a proposed, yet poorly characterized feature of the NiR catalytic cycle. This intermediate is formally described as Cu(I)-NO+ and is proposed to be formed at the type 2 copper site after nitrite binding and electron transfer from the type 1 copper site. In this study, copper-nitrosyl complexes were formed by prolonged exposure of exogenous NO to crystals of wild-type and two variant forms of NiR from Alcaligenes faecalis (AfNiR), and the structures were determined to 1.8 A or better resolution. Exposing oxidized wild-type crystals to NO results in the reverse reaction and formation of nitrite that remains bound at the active site. In a type 1 copper site mutant (H145A) that is incapable of electron transfer to the type 2 site, the reverse reaction is not observed. Instead, in both oxidized and reduced H145A crystals, NO is observed bound in a side-on manner to the type 2 copper. In AfNiR, Asp98 forms hydrogen bonds to both substrate and product bound to the type 2 Cu. In the D98N variant, NO is bound side-on but is more disordered when observed for the wild-type enzyme. The solution EPR spectra of the crystallographically characterized NiR-NO complexes indicate the presence of an oxidized type 2 copper site and thus are interpreted as resulting from stable copper-nitrosyls and formally assigned as Cu(II)-NO-. A reaction scheme in which a second NO molecule is oxidized to nitrite can account for the formation of a Cu(II)-NO- species after exposure of the oxidized H145A variant to NO gas.
+
The line below this paragraph, {{ABSTRACT_PUBMED_17924665}}, adds the Publication Abstract to the page
 +
(as it appears on PubMed at http://www.pubmed.gov), where 17924665 is the PubMed ID number.
 +
-->
 +
{{ABSTRACT_PUBMED_17924665}}
==About this Structure==
==About this Structure==
Line 31: Line 35:
[[Category: Nitrite reductase]]
[[Category: Nitrite reductase]]
[[Category: Oxidoreductase]]
[[Category: Oxidoreductase]]
-
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Sun May 4 13:35:08 2008''
+
 
 +
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Mon Jul 28 19:09:07 2008''

Revision as of 16:09, 28 July 2008

Template:STRUCTURE 2ppf

Reduced mutant D98N of AfNiR exposed to nitric oxide

Template:ABSTRACT PUBMED 17924665

About this Structure

2PPF is a Single protein structure of sequence from Alcaligenes faecalis. Full crystallographic information is available from OCA.

Reference

Stable copper-nitrosyl formation by nitrite reductase in either oxidation state., Tocheva EI, Rosell FI, Mauk AG, Murphy ME, Biochemistry. 2007 Oct 30;46(43):12366-74. Epub 2007 Oct 9. PMID:17924665

Page seeded by OCA on Mon Jul 28 19:09:07 2008

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools