3bxr

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
-
[[Image:3bxr.jpg|left|200px]]
+
{{Seed}}
 +
[[Image:3bxr.png|left|200px]]
<!--
<!--
Line 9: Line 10:
{{STRUCTURE_3bxr| PDB=3bxr | SCENE= }}
{{STRUCTURE_3bxr| PDB=3bxr | SCENE= }}
-
'''Crystal Structures Of Highly Constrained Substrate And Hydrolysis Products Bound To HIV-1 Protease. Implications For Catalytic Mechanism'''
+
===Crystal Structures Of Highly Constrained Substrate And Hydrolysis Products Bound To HIV-1 Protease. Implications For Catalytic Mechanism===
-
==Overview==
+
<!--
-
HIV-1 protease is a key target in treating HIV infection and AIDS, with 10 inhibitors used clinically. Here we used an unusual hexapeptide substrate, containing two macrocyclic tripeptides constrained to mimic a beta strand conformation, linked by a scissile peptide bond, to probe the structural mechanism of proteolysis. The substrate has been cocrystallized with catalytically active synthetic HIV-1 protease and an inactive isosteric (D25N) mutant, and three-dimensional structures were determined (1.60 A). The structure of the inactive HIVPR(D25N)/substrate complex shows an intact substrate molecule in a single orientation that perfectly mimics the binding of conventional peptide ligands of HIVPR. The structure of the active HIVPR/product complex shows two monocyclic hydrolysis products trapped in the active site, revealing two molecules of the N-terminal monocyclic product bound adjacent to one another, one molecule occupying the nonprime site, as expected, and the other monocycle binding in the prime site in the reverse orientation. The results suggest that both hydrolysis products are released from the active site upon cleavage and then rebind to the enzyme. These structures reveal that N-terminal binding of ligands is preferred, that the C-terminal site is more flexible, and that HIVPR can recognize substrate shape rather than just sequence alone. The product complex reveals three carboxylic acids in an almost planar orientation, indicating an unusual hexagonal homodromic complex between three carboxylic acids. The data presented herein regarding orientation of catalytic aspartates support the cleavage mechanism proposed by Northrop. The results imply strategies for design of inhibitors targeting the N-terminal side of the cleavage site or taking advantage of the flexibility in the protease domain that accommodates substrate/inhibitor segments C-terminal to the cleavage site.
+
The line below this paragraph, {{ABSTRACT_PUBMED_18311928}}, adds the Publication Abstract to the page
 +
(as it appears on PubMed at http://www.pubmed.gov), where 18311928 is the PubMed ID number.
 +
-->
 +
{{ABSTRACT_PUBMED_18311928}}
==About this Structure==
==About this Structure==
Line 20: Line 24:
==Reference==
==Reference==
Crystal Structures of Highly Constrained Substrate and Hydrolysis Products Bound to HIV-1 Protease. Implications for the Catalytic Mechanism., Tyndall JD, Pattenden LK, Reid RC, Hu SH, Alewood D, Alewood PF, Walsh T, Fairlie DP, Martin JL, Biochemistry. 2008 Mar 25;47(12):3736-44. Epub 2008 Mar 1. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/18311928 18311928]
Crystal Structures of Highly Constrained Substrate and Hydrolysis Products Bound to HIV-1 Protease. Implications for the Catalytic Mechanism., Tyndall JD, Pattenden LK, Reid RC, Hu SH, Alewood D, Alewood PF, Walsh T, Fairlie DP, Martin JL, Biochemistry. 2008 Mar 25;47(12):3736-44. Epub 2008 Mar 1. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/18311928 18311928]
 +
 +
Molecular recognition of macrocyclic peptidomimetic inhibitors by HIV-1 protease., Martin JL, Begun J, Schindeler A, Wickramasinghe WA, Alewood D, Alewood PF, Bergman DA, Brinkworth RI, Abbenante G, March DR, Reid RC, Fairlie DP, Biochemistry. 1999 Jun 22;38(25):7978-88. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/10387041 10387041]
[[Category: HIV-1 retropepsin]]
[[Category: HIV-1 retropepsin]]
[[Category: Single protein]]
[[Category: Single protein]]
Line 63: Line 69:
[[Category: Zinc]]
[[Category: Zinc]]
[[Category: Zinc-finger]]
[[Category: Zinc-finger]]
-
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Sun May 4 21:11:40 2008''
+
 
 +
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Tue Jul 29 15:40:39 2008''

Revision as of 12:40, 29 July 2008

Template:STRUCTURE 3bxr

Crystal Structures Of Highly Constrained Substrate And Hydrolysis Products Bound To HIV-1 Protease. Implications For Catalytic Mechanism

Template:ABSTRACT PUBMED 18311928

About this Structure

3BXR is a Single protein structure. Full crystallographic information is available from OCA.

Reference

Crystal Structures of Highly Constrained Substrate and Hydrolysis Products Bound to HIV-1 Protease. Implications for the Catalytic Mechanism., Tyndall JD, Pattenden LK, Reid RC, Hu SH, Alewood D, Alewood PF, Walsh T, Fairlie DP, Martin JL, Biochemistry. 2008 Mar 25;47(12):3736-44. Epub 2008 Mar 1. PMID:18311928

Molecular recognition of macrocyclic peptidomimetic inhibitors by HIV-1 protease., Martin JL, Begun J, Schindeler A, Wickramasinghe WA, Alewood D, Alewood PF, Bergman DA, Brinkworth RI, Abbenante G, March DR, Reid RC, Fairlie DP, Biochemistry. 1999 Jun 22;38(25):7978-88. PMID:10387041

Page seeded by OCA on Tue Jul 29 15:40:39 2008

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools