1ebd
From Proteopedia
(New page: 200px<br /><applet load="1ebd" size="450" color="white" frame="true" align="right" spinBox="true" caption="1ebd, resolution 2.6Å" /> '''DIHYDROLIPOAMIDE DEHY...) |
|||
Line 1: | Line 1: | ||
- | [[Image:1ebd.gif|left|200px]]<br /><applet load="1ebd" size=" | + | [[Image:1ebd.gif|left|200px]]<br /><applet load="1ebd" size="350" color="white" frame="true" align="right" spinBox="true" |
caption="1ebd, resolution 2.6Å" /> | caption="1ebd, resolution 2.6Å" /> | ||
'''DIHYDROLIPOAMIDE DEHYDROGENASE COMPLEXED WITH THE BINDING DOMAIN OF THE DIHYDROLIPOAMIDE ACETYLASE'''<br /> | '''DIHYDROLIPOAMIDE DEHYDROGENASE COMPLEXED WITH THE BINDING DOMAIN OF THE DIHYDROLIPOAMIDE ACETYLASE'''<br /> | ||
==Overview== | ==Overview== | ||
- | BACKGROUND. The ubiquitous pyruvate dehydrogenase multienzyme complex is | + | BACKGROUND. The ubiquitous pyruvate dehydrogenase multienzyme complex is built around an octahedral or icosahedral core of dihydrolipoamide acetyltransferase (E2) chains, to which multiple copies of pyruvate decarboxylase (E1) and dihydrolipoamide dehydrogenase (E3) bind tightly but non-covalently. E2 is a flexible multidomain protein that mediates interactions with E1 and E3 through a remarkably small binding domain (E2BD). RESULTS. In the Bacillus stearothermophilus complex, the E2 core is an icosahedral assembly of 60 E2 chains. The crystal structure of the E3 dimer (101 kDa) complexed with E2BD (4 kDa) has been solved to 2.6 A resolution. Interactions between E3 and E2BD are dominated by an electrostatic zipper formed by Arg135 and Arg139 in the N-terminal helix of E2BD and Asp344 and Glu431 of one of the monomers of E3. E2BD interacts with both E3 monomers, but the binding site is located close to the twofold axis. Thus, in agreement with earlier biochemical results, it is impossible for two molecules of E2BD to bind simultaneously to one E3 dimer. CONCLUSIONS. Combining this new structure for the E3-E2BD complex with previously determined structures of the E2 catalytic domain and the E2 lipoyl domain creates a model of the E2 core showing how the lipoyl domain can move between the active sites of E2 and E3 in the multienzyme complex. |
==About this Structure== | ==About this Structure== | ||
- | 1EBD is a [http://en.wikipedia.org/wiki/Protein_complex Protein complex] structure of sequences from [http://en.wikipedia.org/wiki/Geobacillus_stearothermophilus Geobacillus stearothermophilus] with FAD as [http://en.wikipedia.org/wiki/ligand ligand]. Active as [http://en.wikipedia.org/wiki/Dihydrolipoyl_dehydrogenase Dihydrolipoyl dehydrogenase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.8.1.4 1.8.1.4] Full crystallographic information is available from [http:// | + | 1EBD is a [http://en.wikipedia.org/wiki/Protein_complex Protein complex] structure of sequences from [http://en.wikipedia.org/wiki/Geobacillus_stearothermophilus Geobacillus stearothermophilus] with <scene name='pdbligand=FAD:'>FAD</scene> as [http://en.wikipedia.org/wiki/ligand ligand]. Active as [http://en.wikipedia.org/wiki/Dihydrolipoyl_dehydrogenase Dihydrolipoyl dehydrogenase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.8.1.4 1.8.1.4] Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1EBD OCA]. |
==Reference== | ==Reference== | ||
Line 14: | Line 14: | ||
[[Category: Geobacillus stearothermophilus]] | [[Category: Geobacillus stearothermophilus]] | ||
[[Category: Protein complex]] | [[Category: Protein complex]] | ||
- | [[Category: Allen, M | + | [[Category: Allen, M D.]] |
- | [[Category: Hol, W | + | [[Category: Hol, W G.J.]] |
- | [[Category: Mande, S | + | [[Category: Mande, S S.]] |
- | [[Category: Perham, R | + | [[Category: Perham, R N.]] |
[[Category: Sarfaty, S.]] | [[Category: Sarfaty, S.]] | ||
[[Category: FAD]] | [[Category: FAD]] | ||
Line 24: | Line 24: | ||
[[Category: redox-active center]] | [[Category: redox-active center]] | ||
- | ''Page seeded by [http:// | + | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Feb 21 12:25:57 2008'' |
Revision as of 10:25, 21 February 2008
|
DIHYDROLIPOAMIDE DEHYDROGENASE COMPLEXED WITH THE BINDING DOMAIN OF THE DIHYDROLIPOAMIDE ACETYLASE
Overview
BACKGROUND. The ubiquitous pyruvate dehydrogenase multienzyme complex is built around an octahedral or icosahedral core of dihydrolipoamide acetyltransferase (E2) chains, to which multiple copies of pyruvate decarboxylase (E1) and dihydrolipoamide dehydrogenase (E3) bind tightly but non-covalently. E2 is a flexible multidomain protein that mediates interactions with E1 and E3 through a remarkably small binding domain (E2BD). RESULTS. In the Bacillus stearothermophilus complex, the E2 core is an icosahedral assembly of 60 E2 chains. The crystal structure of the E3 dimer (101 kDa) complexed with E2BD (4 kDa) has been solved to 2.6 A resolution. Interactions between E3 and E2BD are dominated by an electrostatic zipper formed by Arg135 and Arg139 in the N-terminal helix of E2BD and Asp344 and Glu431 of one of the monomers of E3. E2BD interacts with both E3 monomers, but the binding site is located close to the twofold axis. Thus, in agreement with earlier biochemical results, it is impossible for two molecules of E2BD to bind simultaneously to one E3 dimer. CONCLUSIONS. Combining this new structure for the E3-E2BD complex with previously determined structures of the E2 catalytic domain and the E2 lipoyl domain creates a model of the E2 core showing how the lipoyl domain can move between the active sites of E2 and E3 in the multienzyme complex.
About this Structure
1EBD is a Protein complex structure of sequences from Geobacillus stearothermophilus with as ligand. Active as Dihydrolipoyl dehydrogenase, with EC number 1.8.1.4 Full crystallographic information is available from OCA.
Reference
Protein-protein interactions in the pyruvate dehydrogenase multienzyme complex: dihydrolipoamide dehydrogenase complexed with the binding domain of dihydrolipoamide acetyltransferase., Mande SS, Sarfaty S, Allen MD, Perham RN, Hol WG, Structure. 1996 Mar 15;4(3):277-86. PMID:8805537
Page seeded by OCA on Thu Feb 21 12:25:57 2008