1frp
From Proteopedia
(New page: 200px<br /><applet load="1frp" size="450" color="white" frame="true" align="right" spinBox="true" caption="1frp, resolution 2.0Å" /> '''CRYSTAL STRUCTURE OF ...) |
|||
Line 1: | Line 1: | ||
- | [[Image:1frp.gif|left|200px]]<br /><applet load="1frp" size=" | + | [[Image:1frp.gif|left|200px]]<br /><applet load="1frp" size="350" color="white" frame="true" align="right" spinBox="true" |
caption="1frp, resolution 2.0Å" /> | caption="1frp, resolution 2.0Å" /> | ||
'''CRYSTAL STRUCTURE OF FRUCTOSE-1,6-BISPHOSPHATASE COMPLEXED WITH FRUCTOSE-2,6-BISPHOSPHATE, AMP AND ZN2+ AT 2.0 ANGSTROMS RESOLUTION. ASPECTS OF SYNERGISM BETWEEN INHIBITORS'''<br /> | '''CRYSTAL STRUCTURE OF FRUCTOSE-1,6-BISPHOSPHATASE COMPLEXED WITH FRUCTOSE-2,6-BISPHOSPHATE, AMP AND ZN2+ AT 2.0 ANGSTROMS RESOLUTION. ASPECTS OF SYNERGISM BETWEEN INHIBITORS'''<br /> | ||
==Overview== | ==Overview== | ||
- | The crystal structure of fructose-1,6-bisphosphatase (Fru-1,6-Pase; EC | + | The crystal structure of fructose-1,6-bisphosphatase (Fru-1,6-Pase; EC 3.1.3.11) complexed with Zn2+ and two allosteric regulators, AMP and fructose 2,6-bisphosphate (Fru-2,6-P2) has been determined at 2.0-A resolution. In the refined model, the crystallographic R factor is 0.189 with rms deviations of 0.014 A and 2.8 degrees from ideal geometries for bond lengths and bond angles, respectively. A 15 degrees rotation is observed between the upper dimer C1C2 and the lower dimer C3C4 relative to the R-form structure (fructose 6-phosphate complex), consistent with that expected from a T-form structure. The major difference between the structure of the previously determined Fru-2,6-P2 complex (R form) and that of the current quaternary T-form complex lies in the active site domain. A zinc binding site distinct from the three binding sites established earlier was identified within each monomer. Helix H4 (residues 123-127) was found to be better defined than in previously studied ligated Fru-1,6-Pase structures. Interactions between monomers in the active site domain were found involving H4 residues from one monomer and residues Tyr-258 and Arg-243 from the adjacent monomer. Cooperativity between AMP and Fru-2,6-P2 in signal transmission probably involves the following features: an AMP site, the adjacent B3 strand (residues 113-118), the metal site, the immediate active site, the short helix H4 (residues 123-127), and Tyr-258 and Arg-243 from the adjacent monomer within the upper (or lower) dimer. The closest distance between the immediate active site and that on the adjacent monomer is only 5 A. Thus, the involvement of H4 in signal transmission adds another important pathway to the scheme of the allosteric mechanism of Fru-1,6-Pase. |
==About this Structure== | ==About this Structure== | ||
- | 1FRP is a [http://en.wikipedia.org/wiki/Single_protein Single protein] structure of sequence from [http://en.wikipedia.org/wiki/Sus_scrofa Sus scrofa] with FDP, ZN and AMP as [http://en.wikipedia.org/wiki/ligands ligands]. Active as [http://en.wikipedia.org/wiki/Fructose-bisphosphatase Fructose-bisphosphatase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.1.3.11 3.1.3.11] Full crystallographic information is available from [http:// | + | 1FRP is a [http://en.wikipedia.org/wiki/Single_protein Single protein] structure of sequence from [http://en.wikipedia.org/wiki/Sus_scrofa Sus scrofa] with <scene name='pdbligand=FDP:'>FDP</scene>, <scene name='pdbligand=ZN:'>ZN</scene> and <scene name='pdbligand=AMP:'>AMP</scene> as [http://en.wikipedia.org/wiki/ligands ligands]. Active as [http://en.wikipedia.org/wiki/Fructose-bisphosphatase Fructose-bisphosphatase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.1.3.11 3.1.3.11] Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1FRP OCA]. |
==Reference== | ==Reference== | ||
Line 15: | Line 15: | ||
[[Category: Sus scrofa]] | [[Category: Sus scrofa]] | ||
[[Category: Huang, S.]] | [[Category: Huang, S.]] | ||
- | [[Category: Liang, J | + | [[Category: Liang, J Y.]] |
- | [[Category: Lipscomb, W | + | [[Category: Lipscomb, W N.]] |
[[Category: Xue, Y.]] | [[Category: Xue, Y.]] | ||
[[Category: Zhang, Y.]] | [[Category: Zhang, Y.]] | ||
Line 24: | Line 24: | ||
[[Category: hydrolase(phosphoric monoester)]] | [[Category: hydrolase(phosphoric monoester)]] | ||
- | ''Page seeded by [http:// | + | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Feb 21 12:41:56 2008'' |
Revision as of 10:41, 21 February 2008
|
CRYSTAL STRUCTURE OF FRUCTOSE-1,6-BISPHOSPHATASE COMPLEXED WITH FRUCTOSE-2,6-BISPHOSPHATE, AMP AND ZN2+ AT 2.0 ANGSTROMS RESOLUTION. ASPECTS OF SYNERGISM BETWEEN INHIBITORS
Overview
The crystal structure of fructose-1,6-bisphosphatase (Fru-1,6-Pase; EC 3.1.3.11) complexed with Zn2+ and two allosteric regulators, AMP and fructose 2,6-bisphosphate (Fru-2,6-P2) has been determined at 2.0-A resolution. In the refined model, the crystallographic R factor is 0.189 with rms deviations of 0.014 A and 2.8 degrees from ideal geometries for bond lengths and bond angles, respectively. A 15 degrees rotation is observed between the upper dimer C1C2 and the lower dimer C3C4 relative to the R-form structure (fructose 6-phosphate complex), consistent with that expected from a T-form structure. The major difference between the structure of the previously determined Fru-2,6-P2 complex (R form) and that of the current quaternary T-form complex lies in the active site domain. A zinc binding site distinct from the three binding sites established earlier was identified within each monomer. Helix H4 (residues 123-127) was found to be better defined than in previously studied ligated Fru-1,6-Pase structures. Interactions between monomers in the active site domain were found involving H4 residues from one monomer and residues Tyr-258 and Arg-243 from the adjacent monomer. Cooperativity between AMP and Fru-2,6-P2 in signal transmission probably involves the following features: an AMP site, the adjacent B3 strand (residues 113-118), the metal site, the immediate active site, the short helix H4 (residues 123-127), and Tyr-258 and Arg-243 from the adjacent monomer within the upper (or lower) dimer. The closest distance between the immediate active site and that on the adjacent monomer is only 5 A. Thus, the involvement of H4 in signal transmission adds another important pathway to the scheme of the allosteric mechanism of Fru-1,6-Pase.
About this Structure
1FRP is a Single protein structure of sequence from Sus scrofa with , and as ligands. Active as Fructose-bisphosphatase, with EC number 3.1.3.11 Full crystallographic information is available from OCA.
Reference
Crystal structure of fructose-1,6-bisphosphatase complexed with fructose 2,6-bisphosphate, AMP, and Zn2+ at 2.0-A resolution: aspects of synergism between inhibitors., Xue Y, Huang S, Liang JY, Zhang Y, Lipscomb WN, Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12482-6. PMID:7809062
Page seeded by OCA on Thu Feb 21 12:41:56 2008