Llama Antibody Inhibits Botulinum Neruotoxin

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
-
==''[http://en.wikipedia.org/wiki/Clostridium_botulinum#Pathology Clostridium Botulinum]''==
+
==''[http://www.nih.gov/researchmatters/march2007/03052007toxins.htm Clostridium Botulinum]''==
[[Image:toxins_l.gif|right|180px]]
[[Image:toxins_l.gif|right|180px]]
-
Clostridium botulinum is a gram-positive, rod shaped bacterium that produces neurotoxins known as botulinum neurotoxins types A-G, which causes flaccid muscular paralysis seen in botulism, and is also the main paralytic agent in botox. It is an anaerobic spore-former, which produces oval, subterminal endospores and is commonly found in soil.Botulism poisoning can occur due to improperly preserved or home canned low-acid food that was not processed using correct preservation times and/or pressure.
+
C. botulinum bacteria, which are commonly found in soil, can form spores that allow them to survive in a dormant state until they're exposed to conditions that support their growth. Infant botulism, the most common type of botulism, occurs when infants consume these spores, which then grow in their intestines and release toxin. In adults, most outbreaks are caused by contaminated home-canned foods. You can also get botulism through contaminated wounds.
 +
 
 +
If diagnosed early, botulism can be treated with an antitoxin, which blocks the action of the toxin in the blood. But recovery still takes many months. The antitoxin can also cause serious side effects, has only a very short window of application and is expensive to produce in large enough quantities to combat a bioterrorism attack. Dr. Kim Janda of The Scripps Research Institute and his colleagues, with funding from NIH's National Institute of Allergy and Infectious Diseases (NIAID) and The Skaggs Institute for Chemical Biology, set out to find other compounds that could act against botulinum toxin A.

Revision as of 01:39, 2 December 2010

Clostridium Botulinum

C. botulinum bacteria, which are commonly found in soil, can form spores that allow them to survive in a dormant state until they're exposed to conditions that support their growth. Infant botulism, the most common type of botulism, occurs when infants consume these spores, which then grow in their intestines and release toxin. In adults, most outbreaks are caused by contaminated home-canned foods. You can also get botulism through contaminated wounds.

If diagnosed early, botulism can be treated with an antitoxin, which blocks the action of the toxin in the blood. But recovery still takes many months. The antitoxin can also cause serious side effects, has only a very short window of application and is expensive to produce in large enough quantities to combat a bioterrorism attack. Dr. Kim Janda of The Scripps Research Institute and his colleagues, with funding from NIH's National Institute of Allergy and Infectious Diseases (NIAID) and The Skaggs Institute for Chemical Biology, set out to find other compounds that could act against botulinum toxin A.





Botulinum Toxin










Llama Antibody Inhibits Botulinum Neruotoxin

Template:STRUCTURE 3k3q PubMed Abstract: Ingestion or inhalation of botulinum neurotoxin (BoNT) results in botulism, a severe and frequently fatal disease. Current treatments rely on antitoxins, which, while effective, cannot reverse symptoms once BoNT has entered the neuron. For treatments that can reverse intoxication, interest... [ Read More & Search PubMed Abstracts ] Ingestion or inhalation of botulinum neurotoxin (BoNT) results in botulism, a severe and frequently fatal disease. Current treatments rely on antitoxins, which, while effective, cannot reverse symptoms once BoNT has entered the neuron. For treatments that can reverse intoxication, interest has focused on developing inhibitors of the enzymatic BoNT light chain (BoNT Lc). Such inhibitors typically mimic substrate and bind in or around the substrate cleavage pocket. To explore the full range of binding sites for serotype A light chain (BoNT/A Lc) inhibitors, we created a library of non-immune llama single-domain VHH (camelid heavy-chain variable region derived from heavy-chain-only antibody) antibodies displayed on the surface of the yeast Saccharomyces cerevisiae. Library selection on BoNT/A Lc yielded 15 yeast-displayed VHH with equilibrium dissociation constants (K(d)) from 230 to 0.03 nM measured by flow cytometry. Eight of 15 VHH inhibited the cleavage of substrate SNAP25 (synaptosome-associated protein of 25,000 Da) by BoNT/A Lc. The most potent VHH (Aa1) had a solution K(d) for BoNT/A Lc of 1.47 x 10(-)(10) M and an IC(50) (50% inhibitory concentration) of 4.7 x 10(-)(10) M and was resistant to heat denaturation and reducing conditions. To understand the mechanism by which Aa1 inhibited catalysis, we solved the X-ray crystal structure of the BoNT/A Lc-Aa1 VHH complex at 2.6 A resolution. The structure reveals that the Aa1 VHH binds in the alpha-exosite of the BoNT/A Lc, far from the active site for catalysis. The study validates the utility of non-immune llama VHH libraries as a source of enzyme inhibitors and identifies the BoNT/A Lc alpha-exosite as a target for inhibitor development.

Proteopedia Page Contributors and Editors (what is this?)

Bryant Chen, Alexander Berchansky, Michal Harel

Personal tools