Journal:JBIC:8
From Proteopedia
(Difference between revisions)

Line 4: | Line 4: | ||
<hr/> | <hr/> | ||
<b>Molecular Tour</b><br> | <b>Molecular Tour</b><br> | ||
- | |||
- | |||
- | |||
A wide diversity of both structure and function has been discovered in the study of <scene name='Journal:JBIC:8/Rabbit_hb/1'>hemoglobins (Hbs) from many species</scene>. Hbs transport <scene name='Journal:JBIC:8/Rabbit_hb/5'>oxygen</scene> in the red blood cells of higher organisms. Even though oxygen molecules can diffuse into cells, unicellular organisms also have Hb-like molecules. Here, we consider the term 'hemoglobins' to include such molecules. Three classes of Hb have been found in unicellular organisms. First, single-domain globins are comprised of three-over-three (3/3) α-helical folds, as is myoglobin (Mb). Second, flavohemoglobins are distinguished by the presence of an N-terminal globin domain and an additional C-terminal FAD-containing reductase region. Finally, truncated Hbs (trHbs) have been discovered recently and are widely distributed in unicellular organisms. | A wide diversity of both structure and function has been discovered in the study of <scene name='Journal:JBIC:8/Rabbit_hb/1'>hemoglobins (Hbs) from many species</scene>. Hbs transport <scene name='Journal:JBIC:8/Rabbit_hb/5'>oxygen</scene> in the red blood cells of higher organisms. Even though oxygen molecules can diffuse into cells, unicellular organisms also have Hb-like molecules. Here, we consider the term 'hemoglobins' to include such molecules. Three classes of Hb have been found in unicellular organisms. First, single-domain globins are comprised of three-over-three (3/3) α-helical folds, as is myoglobin (Mb). Second, flavohemoglobins are distinguished by the presence of an N-terminal globin domain and an additional C-terminal FAD-containing reductase region. Finally, truncated Hbs (trHbs) have been discovered recently and are widely distributed in unicellular organisms. | ||
Revision as of 16:23, 20 March 2011
|
- ↑ Igarashi J, Kobayashi K, Matsuoka A. A hydrogen-bonding network formed by the B10-E7-E11 residues of a truncated hemoglobin from Tetrahymena pyriformis is critical for stability of bound oxygen and nitric oxide detoxification. J Biol Inorg Chem. 2011 Feb 5. PMID:21298303 doi:10.1007/s00775-011-0761-3
This page complements a publication in scientific journals and is one of the Proteopedia's Interactive 3D Complement pages. For aditional details please see I3DC.