A-ATP Synthase
From Proteopedia
(Difference between revisions)
| Line 1: | Line 1: | ||
<StructureSection load=3p20 size='500' side='right' caption='A-ATP synthase', ([[3p20]])' scene=''> | <StructureSection load=3p20 size='500' side='right' caption='A-ATP synthase', ([[3p20]])' scene=''> | ||
==Introduction== | ==Introduction== | ||
| - | The A1Ao [http://en.wikipedia.org/wiki/Atp_synthase ATP synthase] from archaea represents a class of chimeric ATPases/synthase , whose function and general structural design share characteristics both with vacuolar [http://en.wikipedia.org/wiki/V-ATPase V1V0 ATPases] and with[http://en.wikipedia.org/wiki/F-ATPase F1Fo ATP synthases] <ref> http://www.ncbi.nlm.nih.gov/pubmed/16563431 </ref> A1A0 ATP synthase catalyzes the formation of the energy currency ATP by a membrane-embedded electrically-driven motor. The archaeon in this study, [http://en.wikipedia.org/wiki/Pyrococcus Pyrococcus] horikoshii OT3 is an anaerobic thermophile residing in oceanic deep sea vents with optimal growth at 100degrees. Anaerobic [http://en.wikipedia.org/wiki/Anaerobic_fermentation fermentation] is the principle metabolic pathway. The membrane-embedded electrically-driven motor (A0) is very different in archaea with sometimes novel, exceptional subunit composition and coupling stoichiometries that may reflect the differences in energy-conserving mechanisms as well as adaptation to temperatures at or above 100 degrees C. | + | The A1Ao [http://en.wikipedia.org/wiki/Atp_synthase ATP synthase] from archaea represents a class of chimeric ATPases/synthase , whose function and general structural design share characteristics both with vacuolar [http://en.wikipedia.org/wiki/V-ATPase V1V0 ATPases] and with[http://en.wikipedia.org/wiki/F-ATPase F1Fo ATP synthases] <ref> http://www.ncbi.nlm.nih.gov/pubmed/16563431 </ref> A1A0 ATP synthase catalyzes the formation of the energy currency ATP by a membrane-embedded electrically-driven motor. The archaeon in this study, [http://en.wikipedia.org/wiki/Pyrococcus Pyrococcus] horikoshii OT3 is an anaerobic thermophile residing in oceanic deep sea vents with optimal growth at 100degrees. Anaerobic [http://en.wikipedia.org/wiki/Anaerobic_fermentation fermentation] is the principle metabolic pathway. The membrane-embedded electrically-driven motor '''(A0)''' is very different in archaea with sometimes novel, exceptional subunit composition and coupling stoichiometries that may reflect the differences in energy-conserving mechanisms as well as adaptation to temperatures at or above 100 degrees C. |
<ref> http://www.mendeley.com/research/bioenergetics-archaea-atp-synthesis-under-harsh-environmental-conditions/ </ref> Because some [http://en.wikipedia.org/wiki/Archaea archaea] are rooted close to the origin in the tree of life, these unusual mechanisms are considered to have developed very early in the history of life and, therefore, may represent first energy-conserving mechanisms. <ref> http://www.mendeley.com/research/bioenergetics-archaea-atp-synthesis-under-harsh-environmental-conditions/ </ref> | <ref> http://www.mendeley.com/research/bioenergetics-archaea-atp-synthesis-under-harsh-environmental-conditions/ </ref> Because some [http://en.wikipedia.org/wiki/Archaea archaea] are rooted close to the origin in the tree of life, these unusual mechanisms are considered to have developed very early in the history of life and, therefore, may represent first energy-conserving mechanisms. <ref> http://www.mendeley.com/research/bioenergetics-archaea-atp-synthesis-under-harsh-environmental-conditions/ </ref> | ||
| Line 16: | Line 16: | ||
| - | Five steps inside the catalytic A-subunit are critical for catalysis. Substrate entrance, phosphate and nucleotide binding, transition-state formation, ATP formation, and product release. The [http://en.wikipedia.org/wiki/Vanadate vanadate] bound model mimics the transition state. [http://en.wikipedia.org/wiki/Orthovanadate Orthovandate] is a transition state analog and because it can adapt both tetragonal and trigonal bipyramidal coordination geometry. Fig. 1. The '''Avi''' structure can be compared to the '''As''' sulfate bound structure and the '''Apnp''' AMP-PNP bound structure. "'As'" is analogous to the phosphate binding (substrate) structure, and "'Apnp"' is analogous to the ATP binding (product) structure. A reaction coordination is generated from freeze frame picture of reactants such as "'As"' "'Avi"' and "Apnp". | + | Five steps inside the catalytic A-subunit are critical for catalysis. Substrate entrance, phosphate and nucleotide binding, transition-state formation, ATP formation, and product release. The [http://en.wikipedia.org/wiki/Vanadate vanadate] bound model mimics the transition state. [http://en.wikipedia.org/wiki/Orthovanadate Orthovandate] is a transition state analog and because it can adapt both tetragonal and trigonal bipyramidal coordination geometry. Fig. 1. The '''Avi''' structure can be compared to the '''As''' sulfate bound structure and the '''Apnp''' AMP-PNP bound structure. "'As'" is analogous to the phosphate binding (substrate) structure, and "'Apnp"' is analogous to the ATP binding (product) structure. A reaction coordination is generated from freeze frame picture of reactants such as "'As"' "'Avi"' and "Apnp". The movement of specific residues to stabilize the transition state is demonstrated by comparing the deviations between the three structures. |
| - | The movement of specific residues to stabilize the transition state is demonstrated by comparing the deviations between the three structures. | + | |
| - | + | There are three major positions that interact with ligands in the P-loop, S238 L417 and F236. | |
| - | + | ||
| + | Residue [S238] interacts with the nucleotides via a hydrogen bond during catalysis. The distance between residue [S238] is longest in "'As"', shortest in "'Avi"' and intermediate in "'Apnp"' | ||
| + | has an -OH group and is polar O atoms of the y-phosphate in | ||
| + | |||
L417 Is involved in a bifurcated hydrogen bond | L417 Is involved in a bifurcated hydrogen bond | ||
| - | + | ||
| + | P 746 ####Increased proximities of catalytically important residues | ||
| + | |||
| + | |||
| + | Residues that stabilizes the arched P-loop include P235 S238 ----F236*subunit beta in moving towards the y-phosphate of ATP during catalysis. | ||
also stabilized by weak non-polar interactions and polar. K162+ R189+ E188- | also stabilized by weak non-polar interactions and polar. K162+ R189+ E188- | ||
| - | Not at bonding distances-K240 R264 E263-(closer to vanadate) | ||
| + | Although not at bonding distances the residues K240 R264 E263 move closer to the vanadate with respect to the two other structures and are proposed to stabilize the transition state during catalysis | ||
| + | |||
| + | These increased proximities of the catalytically important residues clearly demonstrate that structural rearrangement occurs during catalysis in subunit A | ||
==Conclusion== | ==Conclusion== | ||
Revision as of 00:42, 17 November 2011
| |||||||||||
Mutants
changed to alanine
k240 =stabilizes trans state
t241=Kd's resolved, stabilizes trans, nucleotide binding induces sidechain conformational deviation
References
- ↑ http://www.ncbi.nlm.nih.gov/pubmed/16563431
- ↑ http://www.mendeley.com/research/bioenergetics-archaea-atp-synthesis-under-harsh-environmental-conditions/
- ↑ http://www.mendeley.com/research/bioenergetics-archaea-atp-synthesis-under-harsh-environmental-conditions/
- ↑ http://en.wikipedia.org/wiki/Walker_motifs
Proteopedia Page Contributors and Editors (what is this?)
Kaitlin Chase MacCulloch, Michal Harel, Alexander Berchansky
