A-ATP Synthase
From Proteopedia
(Difference between revisions)
| Line 9: | Line 9: | ||
Within the catalytic '''A''' subunit there are four domains, the '''N-terminal''' [[residues 1-79, 110-116, 189-199]], '''non-homologous''' [[residues 117-188]], '''nucleotide binding alpha-beta''' [[residues 80-99, 200-437]], and '''C-terminal alpha helical bundle''' [[residues 438-588]] domains. figure1. | Within the catalytic '''A''' subunit there are four domains, the '''N-terminal''' [[residues 1-79, 110-116, 189-199]], '''non-homologous''' [[residues 117-188]], '''nucleotide binding alpha-beta''' [[residues 80-99, 200-437]], and '''C-terminal alpha helical bundle''' [[residues 438-588]] domains. figure1. | ||
| - | The P-Loop is the eight residue consensus sequence '''G'''PFGS'''GKT''' [[234-241]]. The P-loop or phosphate binding loop is conserved only within the A subunits and is a glycine-rich loop preceded by a beta sheet and followed by an alpha helix. It interacts with the phosphate groups of the nucleotide and with a [[magnesium ion]] at residue [[K240 and T241 ]], which coordinates the β- and γ-phosphates. This P-loop has an arched conformation unique to A-ATP Synthase, indicating that the mode of nucleotide binding and the catalytic mechanism is different from that of other syntheses. <ref name= Priya> PMID: 21925186</ref> For example, in A-ATP Synthases F236 is involved in P-Loop stabilization, but its equivalent (alanine) in subunit B of the F-ATP syntheses subunit beta is a key residue in the catalytic process in moving towards the y-phosphate of ATP during catalysis. | + | The P-Loop is the eight residue consensus sequence '''G'''PFGS'''GKT''' [[234-241]]. The P-loop or phosphate binding loop is conserved only within the A subunits and is a glycine-rich loop preceded by a beta sheet and followed by an alpha helix. It interacts with the phosphate groups of the nucleotide and with a [[magnesium ion]] at residue [[K240 and T241 ]], which coordinates the β- and γ-phosphates. This P-loop has an arched conformation unique to A-ATP Synthase, indicating that the mode of nucleotide binding and the catalytic mechanism is different from that of other syntheses. <ref name= Priya> PMID: 21925186</ref> For example, in A-ATP Synthases F236 is involved in P-Loop stabilization, but its equivalent (alanine) in subunit B of the F-ATP syntheses subunit beta is a key residue in the catalytic process in moving towards the y-phosphate of ATP during catalysis. By comparing the average distances of the alpha carbons of the P-loop residues to the sulfate, vanadate, and PNP molecules, it was found that the PNP molecule is closest, followed by the vanadate then the sulfate. [[grah]] |
| - | + | ||
==Transition State Stabilization== | ==Transition State Stabilization== | ||
| Line 19: | Line 18: | ||
In "'F-ATP Synthase"' the homolog to S238 is the non polar A158. Since A158 cannot form hydrogen bonds to interact with the substrate, the P-loop undergoes a conformational change. In A-ATP Synthase the close proximity needed between S238 and the vandate during transition state is achieved with a hydrogen bond, not a conformational change in the P-loop. | In "'F-ATP Synthase"' the homolog to S238 is the non polar A158. Since A158 cannot form hydrogen bonds to interact with the substrate, the P-loop undergoes a conformational change. In A-ATP Synthase the close proximity needed between S238 and the vandate during transition state is achieved with a hydrogen bond, not a conformational change in the P-loop. | ||
| - | + | ||
[[The r.m.s.d from '''As''' to '''Avi''' is 1.18 angstroms. On average the P-loop residues a-carbon (234-241) are closer to the vandate molecule than to the sulfonate molecule, by 1.25 angstroms. The r.m.s.d from '''Avi''' to '''Apnp''' is 1.04 angstroms. P-loop residues are located at increasingly greater distances from the y-phosphate of AMP-PNP versus vandate versus sulfate, which shows that vanadate occupies an intermediate position.]] | [[The r.m.s.d from '''As''' to '''Avi''' is 1.18 angstroms. On average the P-loop residues a-carbon (234-241) are closer to the vandate molecule than to the sulfonate molecule, by 1.25 angstroms. The r.m.s.d from '''Avi''' to '''Apnp''' is 1.04 angstroms. P-loop residues are located at increasingly greater distances from the y-phosphate of AMP-PNP versus vandate versus sulfate, which shows that vanadate occupies an intermediate position.]] | ||
Revision as of 07:58, 17 November 2011
| |||||||||||
Mutants K240 and T241 are both contained within the P-Loop. Their behavior with regards to the molecules in the active site is not characteristic of the chain as a whole. Mutations that changed K and T to alanine produced data consistent with the hypothesis that K20 stabilizes the transition state. side chain changes.
References
- ↑ Schafer IB, Bailer SM, Duser MG, Borsch M, Bernal RA, Stock D, Gruber G. Crystal structure of the archaeal A1Ao ATP synthase subunit B from Methanosarcina mazei Go1: Implications of nucleotide-binding differences in the major A1Ao subunits A and B. J Mol Biol. 2006 May 5;358(3):725-40. Epub 2006 Mar 10. PMID:16563431 doi:http://dx.doi.org/10.1016/j.jmb.2006.02.057
- ↑ 2.0 2.1 Muller V, Lemker T, Lingl A, Weidner C, Coskun U, Gruber G. Bioenergetics of archaea: ATP synthesis under harsh environmental conditions. J Mol Microbiol Biotechnol. 2005;10(2-4):167-80. PMID:16645313 doi:10.1159/000091563
- ↑ Priya R, Kumar A, Manimekalai MS, Gruber G. Conserved Glycine Residues in the P-Loop of ATP Synthases Form a Doorframe for Nucleotide Entrance. J Mol Biol. 2011 Sep 8. PMID:21925186 doi:10.1016/j.jmb.2011.08.045
- ↑ Manimekalai MS, Kumar A, Jeyakanthan J, Gruber G. The Transition-Like State and P(i) Entrance into the Catalytic A Subunit of the Biological Engine A-ATP Synthase. J Mol Biol. 2011 Mar 16. PMID:21396943 doi:10.1016/j.jmb.2011.03.010
- ↑ Manimekalai MS, Kumar A, Jeyakanthan J, Gruber G. The Transition-Like State and P(i) Entrance into the Catalytic A Subunit of the Biological Engine A-ATP Synthase. J Mol Biol. 2011 Mar 16. PMID:21396943 doi:10.1016/j.jmb.2011.03.010
Proteopedia Page Contributors and Editors (what is this?)
Kaitlin Chase MacCulloch, Michal Harel, Alexander Berchansky
