A-ATP Synthase
From Proteopedia
| Line 4: | Line 4: | ||
==Introduction== | ==Introduction== | ||
The archaeal A1A0 [http://en.wikipedia.org/wiki/Atp_synthase ATP synthase] represent a class of chimeric ATPases/synthase , whose function and general structural design share characteristics both with vacuolar [http://en.wikipedia.org/wiki/V-ATPase V1V0 ATPases] and with [http://en.wikipedia.org/wiki/F-ATPase F1Fo ATP synthases] <ref name= Schafer>PMID: 16563431 </ref>. A1A0 ATP synthase catalyzes the formation of the energy currency ATP by a membrane-embedded electrically-driven motor. The archaeon in this study, [http://en.wikipedia.org/wiki/Pyrococcus Pyrococcus] horikoshii OT3 is an anaerobic thermophile residing in oceanic deep sea vents with an optimal growth temperature of 100degrees. Anaerobic [http://en.wikipedia.org/wiki/Anaerobic_fermentation fermentation] is its principle metabolic pathway. The specific enzymatic process in A-ATP synthase reveals novel, exceptional subunit composition and coupling stoichiometries that may reflect the differences in energy-conserving mechanisms as well as adaptation to temperatures at or above 100 degrees C. Because some [http://en.wikipedia.org/wiki/Archaea archaea] are rooted close to the origin in the tree of life, these unusual mechanisms are considered to have developed very early in the history of life and, therefore, may represent the first energy-conserving mechanisms. <ref name= Muller> PMID: 16645313</ref> | The archaeal A1A0 [http://en.wikipedia.org/wiki/Atp_synthase ATP synthase] represent a class of chimeric ATPases/synthase , whose function and general structural design share characteristics both with vacuolar [http://en.wikipedia.org/wiki/V-ATPase V1V0 ATPases] and with [http://en.wikipedia.org/wiki/F-ATPase F1Fo ATP synthases] <ref name= Schafer>PMID: 16563431 </ref>. A1A0 ATP synthase catalyzes the formation of the energy currency ATP by a membrane-embedded electrically-driven motor. The archaeon in this study, [http://en.wikipedia.org/wiki/Pyrococcus Pyrococcus] horikoshii OT3 is an anaerobic thermophile residing in oceanic deep sea vents with an optimal growth temperature of 100degrees. Anaerobic [http://en.wikipedia.org/wiki/Anaerobic_fermentation fermentation] is its principle metabolic pathway. The specific enzymatic process in A-ATP synthase reveals novel, exceptional subunit composition and coupling stoichiometries that may reflect the differences in energy-conserving mechanisms as well as adaptation to temperatures at or above 100 degrees C. Because some [http://en.wikipedia.org/wiki/Archaea archaea] are rooted close to the origin in the tree of life, these unusual mechanisms are considered to have developed very early in the history of life and, therefore, may represent the first energy-conserving mechanisms. <ref name= Muller> PMID: 16645313</ref> | ||
| + | ---- | ||
| + | ==Structural Significance=== | ||
| + | The active site is continually reshaped by interactions with the substrate as the substrate interacts with the enzyme. As a result, the substrate does not simply bind to a rigid active site; the amino acid side chains which make up the active site are molded into the precise positions that enable the enzyme to perform its catalytic function. | ||
| + | Stabilization of the transition state supports the [http://en.wikipedia.org/wiki/Induced_fit_model#Induced_fit_model induced fit model]. A-ATP synthase lowers the activation energy by creating an environment in which the transition state is stabilized | ||
| + | (e.g. straining the shape of a substrate—by binding the transition-state conformation of the substrate/product molecules, the enzyme distorts the bound substrate(s) into their transition state form, thereby reducing the amount of energy required to complete the transition). | ||
| + | |||
| + | when the enzyme is complementary to the substrate, the E.S. complex is more stable, has less free energy in the ground state than substrate alone. This increases the activation energy. | ||
| + | |||
| + | |||
| + | Pi binds before ADP. is synthase reversible? where is it located? absence of ADP, may not affect the formation of transition-like state because of example | ||
<StructureSection load=3p20 size='500' side='right' caption='A-ATP synthase', ([[3p20]])' scene=''> | <StructureSection load=3p20 size='500' side='right' caption='A-ATP synthase', ([[3p20]])' scene=''> | ||
| Line 43: | Line 53: | ||
==Significance of the Second Vandate== | ==Significance of the Second Vandate== | ||
The second vandate is positioned in a region exactly opposite the nucleotide-binding site, where the ATP molecule transiently associates on its way to the final binding pocket in subunit "'B"'. [25] L417 Is involved in a bifurcated hydrogen bond with the second vandate. Similar binding behavior was observed for "'As"' [10] indicating that the substrate molecule has a similar path of entry to the active site in both the "'A"' and '"B"' subunit of the A-ATP synthase and that they have a transient binding position near the P-Loop. It is proposed that Pi binds first to the catalytic site and sterically hinders ATP binding, thereby selectively allowing binding of ADP [14] The "'Avi"' structure confirms this, since although both ADP and Vi were present in the crystallized solution, the catalytic A-subunit first permits only the binding of the phosphate analogue Vi. Hence the present "Avi"' structure represents a trapped initial transition state showing for the first time both the entering path and the final Vi-bound state in the catalytic subunit. | The second vandate is positioned in a region exactly opposite the nucleotide-binding site, where the ATP molecule transiently associates on its way to the final binding pocket in subunit "'B"'. [25] L417 Is involved in a bifurcated hydrogen bond with the second vandate. Similar binding behavior was observed for "'As"' [10] indicating that the substrate molecule has a similar path of entry to the active site in both the "'A"' and '"B"' subunit of the A-ATP synthase and that they have a transient binding position near the P-Loop. It is proposed that Pi binds first to the catalytic site and sterically hinders ATP binding, thereby selectively allowing binding of ADP [14] The "'Avi"' structure confirms this, since although both ADP and Vi were present in the crystallized solution, the catalytic A-subunit first permits only the binding of the phosphate analogue Vi. Hence the present "Avi"' structure represents a trapped initial transition state showing for the first time both the entering path and the final Vi-bound state in the catalytic subunit. | ||
| - | |||
| - | ==Conclusion== | ||
| - | |||
| - | The active site is continually reshaped by interactions with the substrate as the substrate interacts with the enzyme. As a result, the substrate does not simply bind to a rigid active site; the amino acid side chains which make up the active site are molded into the precise positions that enable the enzyme to perform its catalytic function. | ||
| - | Stabilization of the transition state supports the [http://en.wikipedia.org/wiki/Induced_fit_model#Induced_fit_model induced fit model]. A-ATP synthase lowers the activation energy by creating an environment in which the transition state is stabilized | ||
| - | |||
| - | (e.g. straining the shape of a substrate—by binding the transition-state conformation of the substrate/product molecules, the enzyme distorts the bound substrate(s) into their transition state form, thereby reducing the amount of energy required to complete the transition). | ||
| - | |||
| - | when the enzyme is complementary to the substrate, the E.S. complex is more stable, has less free energy in the ground state than substrate alone. This increases the activation energy. | ||
| - | |||
| - | |||
| - | Pi binds before ADP. is synthase reversible? where is it located? absence of ADP, may not affect the formation of transition-like state because of example | ||
Revision as of 12:39, 17 November 2011
Introduction
The archaeal A1A0 ATP synthase represent a class of chimeric ATPases/synthase , whose function and general structural design share characteristics both with vacuolar V1V0 ATPases and with F1Fo ATP synthases [1]. A1A0 ATP synthase catalyzes the formation of the energy currency ATP by a membrane-embedded electrically-driven motor. The archaeon in this study, Pyrococcus horikoshii OT3 is an anaerobic thermophile residing in oceanic deep sea vents with an optimal growth temperature of 100degrees. Anaerobic fermentation is its principle metabolic pathway. The specific enzymatic process in A-ATP synthase reveals novel, exceptional subunit composition and coupling stoichiometries that may reflect the differences in energy-conserving mechanisms as well as adaptation to temperatures at or above 100 degrees C. Because some archaea are rooted close to the origin in the tree of life, these unusual mechanisms are considered to have developed very early in the history of life and, therefore, may represent the first energy-conserving mechanisms. [2]
Structural Significance=
The active site is continually reshaped by interactions with the substrate as the substrate interacts with the enzyme. As a result, the substrate does not simply bind to a rigid active site; the amino acid side chains which make up the active site are molded into the precise positions that enable the enzyme to perform its catalytic function. Stabilization of the transition state supports the induced fit model. A-ATP synthase lowers the activation energy by creating an environment in which the transition state is stabilized
(e.g. straining the shape of a substrate—by binding the transition-state conformation of the substrate/product molecules, the enzyme distorts the bound substrate(s) into their transition state form, thereby reducing the amount of energy required to complete the transition).
when the enzyme is complementary to the substrate, the E.S. complex is more stable, has less free energy in the ground state than substrate alone. This increases the activation energy.
Pi binds before ADP. is synthase reversible? where is it located? absence of ADP, may not affect the formation of transition-like state because of example
| |||||||||||
'3-D Structure of P-Loop Mutants K240 and T241 are both contained within the P-Loop. Their behavior with regards to the molecules in the active site is not characteristic of the chain as a whole. Mutations that changed K and T to alanine produced data consistent with the hypothesis that K20 stabilizes the transition state. side chain changes. 3ND8 3ND9
References
- ↑ Schafer IB, Bailer SM, Duser MG, Borsch M, Bernal RA, Stock D, Gruber G. Crystal structure of the archaeal A1Ao ATP synthase subunit B from Methanosarcina mazei Go1: Implications of nucleotide-binding differences in the major A1Ao subunits A and B. J Mol Biol. 2006 May 5;358(3):725-40. Epub 2006 Mar 10. PMID:16563431 doi:http://dx.doi.org/10.1016/j.jmb.2006.02.057
- ↑ 2.0 2.1 Muller V, Lemker T, Lingl A, Weidner C, Coskun U, Gruber G. Bioenergetics of archaea: ATP synthesis under harsh environmental conditions. J Mol Microbiol Biotechnol. 2005;10(2-4):167-80. PMID:16645313 doi:10.1159/000091563
- ↑ Priya R, Kumar A, Manimekalai MS, Gruber G. Conserved Glycine Residues in the P-Loop of ATP Synthases Form a Doorframe for Nucleotide Entrance. J Mol Biol. 2011 Sep 8. PMID:21925186 doi:10.1016/j.jmb.2011.08.045
- ↑ Manimekalai MS, Kumar A, Jeyakanthan J, Gruber G. The Transition-Like State and P(i) Entrance into the Catalytic A Subunit of the Biological Engine A-ATP Synthase. J Mol Biol. 2011 Mar 16. PMID:21396943 doi:10.1016/j.jmb.2011.03.010
- ↑ Manimekalai MS, Kumar A, Jeyakanthan J, Gruber G. The Transition-Like State and P(i) Entrance into the Catalytic A Subunit of the Biological Engine A-ATP Synthase. J Mol Biol. 2011 Mar 16. PMID:21396943 doi:10.1016/j.jmb.2011.03.010
Proteopedia Page Contributors and Editors (what is this?)
Kaitlin Chase MacCulloch, Michal Harel, Alexander Berchansky
