A-ATP Synthase
From Proteopedia
| Line 1: | Line 1: | ||
| - | |||
| Line 8: | Line 7: | ||
==F1F0 ATP Synthase== | ==F1F0 ATP Synthase== | ||
this structure shows the F1 motor and the axle that connects the two. ATP synthesis is composed of two rotary motors, each powered by a different fuel. The motor at the top, termed F0, an electric motor. It is embedded in a membrane (shown schematically as a gray stripe here), and is powered by the flow of hydrogen ions across the membrane. As the protons flow through the motor, they turn a circular rotor (shown in blue). This rotor is connected to the second motor, termed F1. The F1 motor is a chemical motor, powered by ATP. The two motors are connected together by a stator, shown on the right, so that when F0 turns, F1 turns too. | this structure shows the F1 motor and the axle that connects the two. ATP synthesis is composed of two rotary motors, each powered by a different fuel. The motor at the top, termed F0, an electric motor. It is embedded in a membrane (shown schematically as a gray stripe here), and is powered by the flow of hydrogen ions across the membrane. As the protons flow through the motor, they turn a circular rotor (shown in blue). This rotor is connected to the second motor, termed F1. The F1 motor is a chemical motor, powered by ATP. The two motors are connected together by a stator, shown on the right, so that when F0 turns, F1 turns too. | ||
| + | |||
| + | When operating as a generator, it uses the power of rotational motion to build ATP, or when operating as a motor, it breaks down ATP to spin the axle the opposite direction. The synthesis of ATP requires several steps, including the binding of ADP and phosphate, the formation of the new phosphate-phosphate bond, and release of ATP. As the axle turns, it forces the motor into three different conformations that assist these difficult steps. Two states are shown here. The one on the left shows a conformation that assists the binding of ADP, and the one on the right shows a conformation that has been forced open to release ATP. Notice how the oddly-shaped axle forces the change in conformation. | ||
| + | The central axle is composed of chains G, H, and I in this file. Three of the subunits, chains D, E, and F in the file, are the ATP-generating parts--subunit E is shown in red in the left picture and subunit D is shown in the right picture. Subunits A, B, and C are similar, but play a structural role, holding everything in place. | ||
| + | [http://www.youtube.com/watch?v=KU-B7G6anqw&feature=related] | ||
| + | |||
</StructureSection> | </StructureSection> | ||
| Line 16: | Line 20: | ||
A-ATP synthase [http://en.wikipedia.org/wiki/Atp_synthase ATP synthase] is composed of two parts '''A1''' and '''A0''' which are composed of at least nine subunits '''A3B3C:D:E:F:H2:a:cx''' | A-ATP synthase [http://en.wikipedia.org/wiki/Atp_synthase ATP synthase] is composed of two parts '''A1''' and '''A0''' which are composed of at least nine subunits '''A3B3C:D:E:F:H2:a:cx''' | ||
that function as a pair of rotary motors connected by central and peripheral stalk(s) <ref name= Muller> PMID: 16645313</ref>.This structure is similar to the known structure of F [http://en.wikipedia.org/wiki/Atp_synthase ATP synthase]. The '''A0''' domain is the hydrophobic membrane embedded ion-translocating sector that uses the H+ gradient to power ATP synthase in domain '''A1'''. '''A1''' is catalytic and water soluble containing '''A''' and '''B''' subunits. These subunits are comparable to F-ATP synthase [http://en.wikipedia.org/wiki/ATP_synthase_alpha/beta_subunits ATP synthase alpha/beta subunits]. The '''A''' subunit of '''A1''' is catalytic and the '''B''' subunit is regulatory, with a substrate-binding site on each. | that function as a pair of rotary motors connected by central and peripheral stalk(s) <ref name= Muller> PMID: 16645313</ref>.This structure is similar to the known structure of F [http://en.wikipedia.org/wiki/Atp_synthase ATP synthase]. The '''A0''' domain is the hydrophobic membrane embedded ion-translocating sector that uses the H+ gradient to power ATP synthase in domain '''A1'''. '''A1''' is catalytic and water soluble containing '''A''' and '''B''' subunits. These subunits are comparable to F-ATP synthase [http://en.wikipedia.org/wiki/ATP_synthase_alpha/beta_subunits ATP synthase alpha/beta subunits]. The '''A''' subunit of '''A1''' is catalytic and the '''B''' subunit is regulatory, with a substrate-binding site on each. | ||
| - | + | ||
<StructureSection load=3p20 size='500' side='right' caption='A-ATP synthase catalytic A subunit', ([[3p20]])' scene=''> | <StructureSection load=3p20 size='500' side='right' caption='A-ATP synthase catalytic A subunit', ([[3p20]])' scene=''> | ||
Revision as of 22:39, 27 November 2011
| |||||||||||
replace with image on desktop
Structure
A-ATP synthase ATP synthase is composed of two parts A1 and A0 which are composed of at least nine subunits A3B3C:D:E:F:H2:a:cx that function as a pair of rotary motors connected by central and peripheral stalk(s) [1].This structure is similar to the known structure of F ATP synthase. The A0 domain is the hydrophobic membrane embedded ion-translocating sector that uses the H+ gradient to power ATP synthase in domain A1. A1 is catalytic and water soluble containing A and B subunits. These subunits are comparable to F-ATP synthase ATP synthase alpha/beta subunits. The A subunit of A1 is catalytic and the B subunit is regulatory, with a substrate-binding site on each.
| |||||||||||
| |||||||
| Transition state, 1e79 | |||||||
|---|---|---|---|---|---|---|---|
| Ligands: | , , , , , | ||||||
| Activity: | H(+)-transporting two-sector ATPase, with EC number 3.6.3.14 | ||||||
| Related: | 1bmf, 1cow, 1e1q, 1e1r, 1efr, 1nbm, 1qo1
| ||||||
| |||||||
| Resources: | FirstGlance, OCA, RCSB, PDBsum | ||||||
| Coordinates: | save as pdb, mmCIF, xml | ||||||
Contents |
References
- ↑ 1.0 1.1 Muller V, Lemker T, Lingl A, Weidner C, Coskun U, Gruber G. Bioenergetics of archaea: ATP synthesis under harsh environmental conditions. J Mol Microbiol Biotechnol. 2005;10(2-4):167-80. PMID:16645313 doi:10.1159/000091563
- ↑ Schafer IB, Bailer SM, Duser MG, Borsch M, Bernal RA, Stock D, Gruber G. Crystal structure of the archaeal A1Ao ATP synthase subunit B from Methanosarcina mazei Go1: Implications of nucleotide-binding differences in the major A1Ao subunits A and B. J Mol Biol. 2006 May 5;358(3):725-40. Epub 2006 Mar 10. PMID:16563431 doi:http://dx.doi.org/10.1016/j.jmb.2006.02.057
- ↑ Gonzalez JM, Masuchi Y, Robb FT, Ammerman JW, Maeder DL, Yanagibayashi M, Tamaoka J, Kato C. Pyrococcus horikoshii sp. nov., a hyperthermophilic archaeon isolated from a hydrothermal vent at the Okinawa Trough. Extremophiles. 1998 May;2(2):123-30. PMID:9672687
- ↑ 4.0 4.1 Manimekalai MS, Kumar A, Jeyakanthan J, Gruber G. The Transition-Like State and P(i) Entrance into the Catalytic A Subunit of the Biological Engine A-ATP Synthase. J Mol Biol. 2011 Mar 16. PMID:21396943 doi:10.1016/j.jmb.2011.03.010
- ↑ Priya R, Kumar A, Manimekalai MS, Gruber G. Conserved Glycine Residues in the P-Loop of ATP Synthases Form a Doorframe for Nucleotide Entrance. J Mol Biol. 2011 Sep 8. PMID:21925186 doi:10.1016/j.jmb.2011.08.045
Proteopedia Page Contributors and Editors (what is this?)
Kaitlin Chase MacCulloch, Michal Harel, Alexander Berchansky

