Heidi Hu/Sandbox 1
From Proteopedia
(Difference between revisions)
| Line 1: | Line 1: | ||
/>One of the [[CBI Molecules]] being studied in the [http://www.umass.edu/cbi/ University of Massachusetts Amherst Chemistry-Biology Interface Program] at UMass Amherst and on display at the [http://www.molecularplayground.org/ Molecular Playground]. | />One of the [[CBI Molecules]] being studied in the [http://www.umass.edu/cbi/ University of Massachusetts Amherst Chemistry-Biology Interface Program] at UMass Amherst and on display at the [http://www.molecularplayground.org/ Molecular Playground]. | ||
| - | + | <Structure load='2HH7' size='500' frame='true' align='right' caption='Cu(I)-bound CsoR (PDB ID: [http://www.rcsb.org/pdb/explore/explore.do?structureId=2HH7 2HH7])' scene='<scene name='Heidi_Hu/Sandbox_1/Tetrameric_csor/1'/scene>' /> | |
== Introduction == | == Introduction == | ||
| Line 6: | Line 6: | ||
Heavy metals such as iron, nickel, copper, and zinc are important cofactors for the functions of many different metalloenzymes. High levels of these heavy metals can also cause damage cellular components, therefore intracellular levels of metals are tightly regulated within the cell. One of the ways that bacteria can regulate intracellular metal levels is by increasing the amount of metal efflux proteins. CsoR and RcnR are members of a large family of metal-responsive DNA-binding proteins, both of which regulate the transcription of metal-specific efflux proteins. CsoR is only responsive to the binding of Cu(I); whereas RcnR is only responsive to the binding of Ni(II) or Co(II). | Heavy metals such as iron, nickel, copper, and zinc are important cofactors for the functions of many different metalloenzymes. High levels of these heavy metals can also cause damage cellular components, therefore intracellular levels of metals are tightly regulated within the cell. One of the ways that bacteria can regulate intracellular metal levels is by increasing the amount of metal efflux proteins. CsoR and RcnR are members of a large family of metal-responsive DNA-binding proteins, both of which regulate the transcription of metal-specific efflux proteins. CsoR is only responsive to the binding of Cu(I); whereas RcnR is only responsive to the binding of Ni(II) or Co(II). | ||
| - | + | ||
== RcnR and CsoR == | == RcnR and CsoR == | ||
Revision as of 04:46, 17 December 2011
/>One of the CBI Molecules being studied in the University of Massachusetts Amherst Chemistry-Biology Interface Program at UMass Amherst and on display at the Molecular Playground.
| |||||||||||
