We apologize for Proteopedia being slow to respond. For the past two years, a new implementation of Proteopedia has been being built. Soon, it will replace this 18-year old system. All existing content will be moved to the new system at a date that will be announced here.

Journal:BMC:3

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 18: Line 18:
Mechanism of action of xanthine oxidase:
Mechanism of action of xanthine oxidase:
-
Currently approved drugs for xanthine oxidase inhibition are allopurinol and febuxostat. Although both bind to the xanthine-binding site of XO, they work by different molecular mechanisms of action. Allopurinol acts as a substrate that is metabolized via hydroxylation to oxypurinol by Mo-Pt in the active site. Oxypurinol further inhibits the binding of xanthine by co-ordinating with Mo-Pt.<ref name="Truglio">PMID: 11796116</ref> Febuxostat binds tightly in the active site and blocks the binding of xanthine, without interacting with Mo-Pt.<ref name="Okamoto">PMID: 12421831</ref> FYX-051 or topiroxostat currently in Phase II clinical trials also interacts with Mo-Pt just like allopurinol whereas piraxostat is akin to febuxostat.4
+
Currently approved drugs for xanthine oxidase inhibition are allopurinol and febuxostat. Although both bind to the xanthine-binding site of XO, they work by different molecular mechanisms of action. Allopurinol acts as a substrate that is metabolized via hydroxylation to oxypurinol by Mo-Pt in the active site. Oxypurinol further inhibits the binding of xanthine by co-ordinating with Mo-Pt.<ref name="Truglio">PMID: 11796116</ref> Febuxostat binds tightly in the active site and blocks the binding of xanthine, without interacting with Mo-Pt.<ref name="Okamoto">PMID: 12421831</ref> FYX-051 or topiroxostat currently in Phase II clinical trials also interacts with Mo-Pt just like allopurinol whereas piraxostat is akin to febuxostat.<ref name="Eger">PMID: 15148401</ref>
-
The mechanism of metabolism of substrate by XO requires that an electrophilic carbon next to a ring nitrogen of the substrate be positioned adjacent to Mo-Pt, with nitrogen towards Glu1261. Glu1261 acts as a general base and abstracts a proton from Mo-Pt hydroxyl group. The ionized Mo-Pt facilitates nucleophilic attack on the electrophilic carbon center. This type of motif is seen in the substrate inhibitors, allopurinol and FYX-051.4 Febuxostat and piraxostat do not possess this motif and do not get metabolized by Mo-Pt.
+
The mechanism of metabolism of substrate by XO requires that an electrophilic carbon next to a ring nitrogen of the substrate be positioned adjacent to Mo-Pt, with nitrogen towards Glu1261. Glu1261 acts as a general base and abstracts a proton from Mo-Pt hydroxyl group. The ionized Mo-Pt facilitates nucleophilic attack on the electrophilic carbon center. This type of motif is seen in the substrate inhibitors, allopurinol and FYX-051.<ref name="Eger"/> Febuxostat and piraxostat do not possess this motif and do not get metabolized by Mo-Pt.
Our hit has a novel isocytosine scaffold that has a nitrogen in the desired position, but the carbon is substituted with –NH2, and is not available for attack by Mo-Pt. Hence our compounds are "pure inhibitors" and not "substrate inhibitors".
Our hit has a novel isocytosine scaffold that has a nitrogen in the desired position, but the carbon is substituted with –NH2, and is not available for attack by Mo-Pt. Hence our compounds are "pure inhibitors" and not "substrate inhibitors".

Revision as of 11:34, 19 March 2012

Drag the structure with the mouse to rotate
  1. none yet
  2. Pauff JM, Cao H, Hille R. Substrate Orientation and Catalysis at the Molybdenum Site in Xanthine Oxidase: CRYSTAL STRUCTURES IN COMPLEX WITH XANTHINE AND LUMAZINE. J Biol Chem. 2009 Mar 27;284(13):8760-7. Epub 2008 Dec 24. PMID:19109252 doi:10.1074/jbc.M804517200
  3. Truglio JJ, Theis K, Leimkuhler S, Rappa R, Rajagopalan KV, Kisker C. Crystal structures of the active and alloxanthine-inhibited forms of xanthine dehydrogenase from Rhodobacter capsulatus. Structure. 2002 Jan;10(1):115-25. PMID:11796116
  4. Okamoto K, Eger BT, Nishino T, Kondo S, Pai EF, Nishino T. An extremely potent inhibitor of xanthine oxidoreductase. Crystal structure of the enzyme-inhibitor complex and mechanism of inhibition. J Biol Chem. 2003 Jan 17;278(3):1848-55. Epub 2002 Nov 5. PMID:12421831 doi:10.1074/jbc.M208307200
  5. 5.0 5.1 Okamoto K, Matsumoto K, Hille R, Eger BT, Pai EF, Nishino T. The crystal structure of xanthine oxidoreductase during catalysis: implications for reaction mechanism and enzyme inhibition. Proc Natl Acad Sci U S A. 2004 May 25;101(21):7931-6. Epub 2004 May 17. PMID:15148401 doi:10.1073/pnas.0400973101

Proteopedia Page Contributors and Editors (what is this?)

Alexander Berchansky, Jaime Prilusky

This page complements a publication in scientific journals and is one of the Proteopedia's Interactive 3D Complement pages. For aditional details please see I3DC.
Personal tools