User:Jamie Abbott/Sandbox2

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
(Histidyl-tRNA Synthetase)
(Histidyl-tRNA Synthetase)
Line 2: Line 2:
Histidyl tRNA Synthetase (HisRS) is a 94kD <scene name='User:Jamie_Abbott/Sandbox2/Hisrsdimer/2'>homodimer</scene> that belongs to the class II of aminoacyl-tRNA synthetases (aaRS). Aminoacyl-tRNA synthetases have been partitioned into two classes, containing 10 members, on the basis of sequence comparisons<ref name="Eriani">PMID: 2203971</ref>. Class I and Class II differ mainly with respect to the topology of the catalytic fold and site of esterification on cognate tRNA<ref name="Eriani" />. Class II enzymes have a <scene name='User:Jamie_Abbott/Sandbox2/Catalytic_domain/1'>catalytic domain</scene> composed of anti-parallel β-sheets and α-helices (residues 1-325). Additionally, class II enzymes can be further divided into three subgroups: class IIa, distinguished by an N-terminal catalytic domain and C-terminal accessory domain (later shown to be anticodon binding domain); class IIb, whose anticodon binding domain is located on the N-terminal side of the fold; and class IIc, encompassing the tetrameric PheRS and GlyRS class II synthetases.<ref name="Cusack91">PMID: 1852601</ref>
Histidyl tRNA Synthetase (HisRS) is a 94kD <scene name='User:Jamie_Abbott/Sandbox2/Hisrsdimer/2'>homodimer</scene> that belongs to the class II of aminoacyl-tRNA synthetases (aaRS). Aminoacyl-tRNA synthetases have been partitioned into two classes, containing 10 members, on the basis of sequence comparisons<ref name="Eriani">PMID: 2203971</ref>. Class I and Class II differ mainly with respect to the topology of the catalytic fold and site of esterification on cognate tRNA<ref name="Eriani" />. Class II enzymes have a <scene name='User:Jamie_Abbott/Sandbox2/Catalytic_domain/1'>catalytic domain</scene> composed of anti-parallel β-sheets and α-helices (residues 1-325). Additionally, class II enzymes can be further divided into three subgroups: class IIa, distinguished by an N-terminal catalytic domain and C-terminal accessory domain (later shown to be anticodon binding domain); class IIb, whose anticodon binding domain is located on the N-terminal side of the fold; and class IIc, encompassing the tetrameric PheRS and GlyRS class II synthetases.<ref name="Cusack91">PMID: 1852601</ref>
-
'''Function and Catalysis'''<StructureSection load='1KMM' size='500' side='right' caption='Structure of Histidyl-tRNA Synthetase (PDB entry [[1KMM]])' scene=''>Class II aminoacyl-tRNA synthetases aminoacylate the 3'OH of their cognate tRNAs.
+
<StructureSection load='1KMM' size='500' side='right' caption='Structure of Histidyl-tRNA Synthetase (PDB entry [[1KMM]])' scene=''>Class II aminoacyl-tRNA synthetases aminoacylate the 3'OH of their cognate tRNAs.
 +
 
 +
'''Histidine Binding Pocket'''
The active site to HisRS contains a histidine binding pocket composed of highly conserved residues found in distinct sequences motifs. First, the LV/AAGGGLDYY loop (or <scene name='User:Jamie_Abbott/Sandbox2/Hisa_loop/1'>HisA Loop</scene> ) forms one wall of the binding pocket. This HisA loop is highly conserved and extends over a part of the active site<ref name="aaRSbk">Francklyn, C., and Arnez, J.G. (2004) in ''Aminoacyl-tRNA Synthetases'' (Ibba, M.,Francklyn, C.,Cusack, S.. Eds.) [http://www.landesbioscience.com/books/iu/id/810/?nocache=145477703 Landes Publishing, Austin, TX]</ref>. Second, the glycine-rich β-strand (sequence AGGRYDGL preceding <scene name='User:Jamie_Abbott/Sandbox2/Motif_iii/4'>motif III</scene>) comprises the histidine binding pocket floor and wall. Finally, conserved side chains that make direct contact with histidine are Glu83 and Gly127 (<scene name='User:Jamie_Abbott/Sandbox2/Motif_ii/2'>motif II</scene>), which contact the α-amino and α-carbonyl functional groups, respectively, and Glu131 (motif II) and Tyr264, which make hydrogen bonds to the Nδ and Nε, respectively, of the imidazole ring<ref name="aaRSbk" />.</StructureSection>
The active site to HisRS contains a histidine binding pocket composed of highly conserved residues found in distinct sequences motifs. First, the LV/AAGGGLDYY loop (or <scene name='User:Jamie_Abbott/Sandbox2/Hisa_loop/1'>HisA Loop</scene> ) forms one wall of the binding pocket. This HisA loop is highly conserved and extends over a part of the active site<ref name="aaRSbk">Francklyn, C., and Arnez, J.G. (2004) in ''Aminoacyl-tRNA Synthetases'' (Ibba, M.,Francklyn, C.,Cusack, S.. Eds.) [http://www.landesbioscience.com/books/iu/id/810/?nocache=145477703 Landes Publishing, Austin, TX]</ref>. Second, the glycine-rich β-strand (sequence AGGRYDGL preceding <scene name='User:Jamie_Abbott/Sandbox2/Motif_iii/4'>motif III</scene>) comprises the histidine binding pocket floor and wall. Finally, conserved side chains that make direct contact with histidine are Glu83 and Gly127 (<scene name='User:Jamie_Abbott/Sandbox2/Motif_ii/2'>motif II</scene>), which contact the α-amino and α-carbonyl functional groups, respectively, and Glu131 (motif II) and Tyr264, which make hydrogen bonds to the Nδ and Nε, respectively, of the imidazole ring<ref name="aaRSbk" />.</StructureSection>

Revision as of 22:07, 14 April 2012

Contents

Histidyl-tRNA Synthetase

Histidyl tRNA Synthetase (HisRS) is a 94kD that belongs to the class II of aminoacyl-tRNA synthetases (aaRS). Aminoacyl-tRNA synthetases have been partitioned into two classes, containing 10 members, on the basis of sequence comparisons[1]. Class I and Class II differ mainly with respect to the topology of the catalytic fold and site of esterification on cognate tRNA[1]. Class II enzymes have a composed of anti-parallel β-sheets and α-helices (residues 1-325). Additionally, class II enzymes can be further divided into three subgroups: class IIa, distinguished by an N-terminal catalytic domain and C-terminal accessory domain (later shown to be anticodon binding domain); class IIb, whose anticodon binding domain is located on the N-terminal side of the fold; and class IIc, encompassing the tetrameric PheRS and GlyRS class II synthetases.[2]

Structure of Histidyl-tRNA Synthetase (PDB entry 1KMM)

Drag the structure with the mouse to rotate






Mechanism

tRNA


Evolutionary Conservation

Structural Homology

3D Structures of Histidyl-tRNA Synthetase

1KMN

1KMM

1HTT

2EL9


References

  1. 1.0 1.1 Eriani G, Delarue M, Poch O, Gangloff J, Moras D. Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature. 1990 Sep 13;347(6289):203-6. PMID:2203971 doi:http://dx.doi.org/10.1038/347203a0
  2. Cusack S, Hartlein M, Leberman R. Sequence, structural and evolutionary relationships between class 2 aminoacyl-tRNA synthetases. Nucleic Acids Res. 1991 Jul 11;19(13):3489-98. PMID:1852601
  3. 3.0 3.1 Francklyn, C., and Arnez, J.G. (2004) in Aminoacyl-tRNA Synthetases (Ibba, M.,Francklyn, C.,Cusack, S.. Eds.) Landes Publishing, Austin, TX

Proteopedia Page Contributors and Editors (what is this?)

Jamie Abbott

Personal tools