1ghc
From Proteopedia
(New page: 200px<br /><applet load="1ghc" size="450" color="white" frame="true" align="right" spinBox="true" caption="1ghc" /> '''HOMO-AND HETERONUCLEAR TWO-DIMENSIONAL NMR S...) |
|||
Line 1: | Line 1: | ||
- | [[Image:1ghc.jpg|left|200px]]<br /><applet load="1ghc" size=" | + | [[Image:1ghc.jpg|left|200px]]<br /><applet load="1ghc" size="350" color="white" frame="true" align="right" spinBox="true" |
caption="1ghc" /> | caption="1ghc" /> | ||
'''HOMO-AND HETERONUCLEAR TWO-DIMENSIONAL NMR STUDIES OF THE GLOBULAR DOMAIN OF HISTONE H1: FULL ASSIGNMENT, TERTIARY STRUCTURE, AND COMPARISON WITH THE GLOBULAR DOMAIN OF HISTONE H5'''<br /> | '''HOMO-AND HETERONUCLEAR TWO-DIMENSIONAL NMR STUDIES OF THE GLOBULAR DOMAIN OF HISTONE H1: FULL ASSIGNMENT, TERTIARY STRUCTURE, AND COMPARISON WITH THE GLOBULAR DOMAIN OF HISTONE H5'''<br /> | ||
==Overview== | ==Overview== | ||
- | The globular domain of chicken histone H1 (GH1) has been studied by 1H | + | The globular domain of chicken histone H1 (GH1) has been studied by 1H homonuclear and 1H-15N heteronuclear 2D NMR spectroscopy. After the full assignment of the proton and 15N resonances, the tertiary structure of GH1 was determined by an iterative procedure using distance geometry and restrained simulated annealing. The secondary structure elements of GH1, three helices (S5-A16, S24-A34, N42-K56) followed by a beta-hairpin (L59-L73), are folded in a manner very similar to the corresponding parts of the globular domain of chicken histone H5 (GH5) [Clore et al. (1987) EMBO J. 6, 1833-1842; Ramakrishnan et al. (1993) Nature 362, 219-223]. However, subtle differences are detected between the two structures and between the electrostatic potentials surrounding the molecules. The most important differences are located in the loop between the second and third helices, a region that could be responsible for the different affinity for DNA. The most positively charged regions are not found in exactly the same position in GH1 and GH5. Nevertheless, their location seems to agree with the model where nucleosome binding takes place through contact points located at one DNA terminus and close to the dyad axis of the nucleosome [Schwabe & Travers (1993) Curr. Biol. 3, 628-630]. |
==About this Structure== | ==About this Structure== | ||
- | 1GHC is a [http://en.wikipedia.org/wiki/Single_protein Single protein] structure of sequence from [http://en.wikipedia.org/wiki/Gallus_gallus Gallus gallus]. Full crystallographic information is available from [http:// | + | 1GHC is a [http://en.wikipedia.org/wiki/Single_protein Single protein] structure of sequence from [http://en.wikipedia.org/wiki/Gallus_gallus Gallus gallus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1GHC OCA]. |
==Reference== | ==Reference== | ||
Line 19: | Line 19: | ||
[[Category: Ramakrishnan, V.]] | [[Category: Ramakrishnan, V.]] | ||
[[Category: Segers, A.]] | [[Category: Segers, A.]] | ||
- | [[Category: Wodak, S | + | [[Category: Wodak, S J.]] |
[[Category: Wyns, L.]] | [[Category: Wyns, L.]] | ||
[[Category: chromosomal protein]] | [[Category: chromosomal protein]] | ||
- | ''Page seeded by [http:// | + | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Feb 21 12:50:04 2008'' |
Revision as of 10:50, 21 February 2008
|
HOMO-AND HETERONUCLEAR TWO-DIMENSIONAL NMR STUDIES OF THE GLOBULAR DOMAIN OF HISTONE H1: FULL ASSIGNMENT, TERTIARY STRUCTURE, AND COMPARISON WITH THE GLOBULAR DOMAIN OF HISTONE H5
Overview
The globular domain of chicken histone H1 (GH1) has been studied by 1H homonuclear and 1H-15N heteronuclear 2D NMR spectroscopy. After the full assignment of the proton and 15N resonances, the tertiary structure of GH1 was determined by an iterative procedure using distance geometry and restrained simulated annealing. The secondary structure elements of GH1, three helices (S5-A16, S24-A34, N42-K56) followed by a beta-hairpin (L59-L73), are folded in a manner very similar to the corresponding parts of the globular domain of chicken histone H5 (GH5) [Clore et al. (1987) EMBO J. 6, 1833-1842; Ramakrishnan et al. (1993) Nature 362, 219-223]. However, subtle differences are detected between the two structures and between the electrostatic potentials surrounding the molecules. The most important differences are located in the loop between the second and third helices, a region that could be responsible for the different affinity for DNA. The most positively charged regions are not found in exactly the same position in GH1 and GH5. Nevertheless, their location seems to agree with the model where nucleosome binding takes place through contact points located at one DNA terminus and close to the dyad axis of the nucleosome [Schwabe & Travers (1993) Curr. Biol. 3, 628-630].
About this Structure
1GHC is a Single protein structure of sequence from Gallus gallus. Full crystallographic information is available from OCA.
Reference
Homo- and heteronuclear two-dimensional NMR studies of the globular domain of histone H1: full assignment, tertiary structure, and comparison with the globular domain of histone H5., Cerf C, Lippens G, Ramakrishnan V, Muyldermans S, Segers A, Wyns L, Wodak SJ, Hallenga K, Biochemistry. 1994 Sep 20;33(37):11079-86. PMID:7727360
Page seeded by OCA on Thu Feb 21 12:50:04 2008