1l6e

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
(New page: 200px<br /><applet load="1l6e" size="450" color="white" frame="true" align="right" spinBox="true" caption="1l6e" /> '''Solution structure of the docking and dimeri...)

Revision as of 11:41, 21 February 2008


1l6e

Drag the structure with the mouse to rotate

Solution structure of the docking and dimerization domain of protein kinase A II-alpha (RIIalpha D/D). Alternatively called the N-terminal dimerization domain of the regulatory subunit of protein kinase A.

Overview

The structure of the N-terminal docking and dimerization domain of the type IIalpha regulatory subunit (RIIalpha D/D) of protein kinase A (PKA) forms a noncovalent stand-alone X-type four-helix bundle structural motif, consisting of two helix-loop-helix monomers. RIIalpha D/D possesses a strong hydrophobic core and two distinct, exposed faces. A hydrophobic face with a groove is the site of protein-protein interactions necessary for subcellular localization. A highly charged face, opposite to the former, may be involved in regulation of protein-protein interactions as a result of changes in phosphorylation state of the regulatory subunit. Although recent studies have addressed the hydrophobic character of packing of RIIalpha D/D and revealed the function of the hydrophobic face as the binding site to A-kinase anchoring proteins (AKAPs), little attention has been paid to the charges involved in structure and function. To examine the electrostatic character of the structure of RIIalpha D/D we have predicted mean apparent pKa values, based on Poisson-Boltzmann electrostatic calculations, using an ensemble of calculated dimer structures. We propose that the helix promoting sequence Glu34-X-X-X-Arg38 stabilizes the second helix of each monomer, through the formation of a (i, i +4) side chain salt bridge. We show that a weak inter-helical hydrogen bond between Tyr35-Glu19 of each monomer contributes to tertiary packing and may be responsible for discriminating from alternative quaternary packing of the two monomers. We also show that an inter-monomer hydrogen bond between Asp30-Arg40 contributes to quaternary packing. We propose that the charged face comprising of Asp27-Asp30-Glu34-Arg38-Arg40-Glu41-Arg43-Arg44 may be necessary to provide flexibility or stability in the region between the C-terminus and the interdomain/autoinhibitory sequence of RIIalpha, depending on the activation state of PKA. We also discuss the structural requirements necessary for the formation of a stacked (rather than intertwined) dimer, which has consequences for the orientation of the functionally important and distinct faces.

About this Structure

1L6E is a Single protein structure of sequence from Mus musculus. Active as Non-specific serine/threonine protein kinase, with EC number 2.7.11.1 Full crystallographic information is available from OCA.

Reference

Electrostatic properties of the structure of the docking and dimerization domain of protein kinase A IIalpha., Morikis D, Roy M, Newlon MG, Scott JD, Jennings PA, Eur J Biochem. 2002 Apr;269(8):2040-51. PMID:11985580

Page seeded by OCA on Thu Feb 21 13:41:53 2008

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools