Sandbox Reserved 390
From Proteopedia
(Difference between revisions)
| Line 22: | Line 22: | ||
The interplay between the protein, the DNA, and the drug explains the structure-activity relations of etoposide derivatives and the molecular basis of drug-resistant mutations. This resistance occurs via two mechanisms: '''1)''' Decreased accumulation via increased P-glycoprotein; and '''2)''' Changes in target proteins (mutation or decreased expression of topoisomerase II or decreased apoptosis due to mutation of p53). | The interplay between the protein, the DNA, and the drug explains the structure-activity relations of etoposide derivatives and the molecular basis of drug-resistant mutations. This resistance occurs via two mechanisms: '''1)''' Decreased accumulation via increased P-glycoprotein; and '''2)''' Changes in target proteins (mutation or decreased expression of topoisomerase II or decreased apoptosis due to mutation of p53). | ||
| - | '''1.''' Decreased accumulation via increased P-glycoprotein (a multidrug resistance): This drug resistance mechanism is characterized by decreased intracellular accumulation of drug facilitated by overexpression of the human multidrug resistance (mdrl) gene, causing overproduction of P-glycoprotein. This cell membrane protein acts as an export pump for a wide variety of unrelated foreign natural products. By maintaining lower intracellular levels of drug, lower drug concentration would be available to the target, which is topoisomerase II. | + | '''1.''' Decreased accumulation via increased [http://en.wikipedia.org/wiki/P-glycoprotein P-glycoprotein] (a multidrug resistance): This drug resistance mechanism is characterized by decreased intracellular accumulation of drug facilitated by overexpression of the human multidrug resistance (mdrl) gene, causing overproduction of P-glycoprotein. This cell membrane protein acts as an export pump for a wide variety of unrelated foreign natural products. By maintaining lower intracellular levels of drug, lower drug concentration would be available to the target, which is topoisomerase II. |
'''2.''' Changes in target proteins: This mechanism relates directly to the target enzyme; Either low enzyme levels or altered sensitivity of the enzyme for the drug confers resistance to that drug. This mechanism also confers a form of multidrug resistance; in that resistance to one topoisomerase II inhibitor through decreased or altered topoisomerase activity generally translates into resistance to most other topoisomerase II inhibitors. | '''2.''' Changes in target proteins: This mechanism relates directly to the target enzyme; Either low enzyme levels or altered sensitivity of the enzyme for the drug confers resistance to that drug. This mechanism also confers a form of multidrug resistance; in that resistance to one topoisomerase II inhibitor through decreased or altered topoisomerase activity generally translates into resistance to most other topoisomerase II inhibitors. | ||
Revision as of 18:54, 25 November 2012
Human topoisomerase IIbeta in complex with DNA and etoposide
| |||||||||||
References
- ↑ Wu CC, Li TK, Farh L, Lin LY, Lin TS, Yu YJ, Yen TJ, Chiang CW, Chan NL. Structural basis of type II topoisomerase inhibition by the anticancer drug etoposide. Science. 2011 Jul 22;333(6041):459-62. PMID:21778401 doi:10.1126/science.1204117
- ↑ Kathryn L. Gilroy, Chrysoula Leontiou, Kay Padget, Jeremy H. Lakey and Caroline A. Austin* "mAMSA resistant human topoisomerase IIβ mutation G465D has reduced ATP hydrolysis activity” Oxford JournalsLife Sciences Nucleic Acids Research Volume 34, Issue 5Pp. 1597-1607. DOI: 10.1093/nar/gkl057
- ↑ Wu CC, Li TK, Farh L, Lin LY, Lin TS, Yu YJ, Yen TJ, Chiang CW, Chan NL. Structural basis of type II topoisomerase inhibition by the anticancer drug etoposide. Science. 2011 Jul 22;333(6041):459-62. PMID:21778401 doi:10.1126/science.1204117
