Fragment-Based Drug Discovery

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 17: Line 17:
! scope="col" width="5000px" | SAR by NMR
! scope="col" width="5000px" | SAR by NMR
|-
|-
-
| scope="col" width="5000px" | Structure-activity relationship (SAR) by NMR is one tool that can be used to design and develop new drugs. This is the process "in which small organic molecules that bind to proximal subsites of a protein are identified, optimized, and linked together to produce high-affinity ligands."<ref name="Shuker S. B., Hajduk P. J., Meadows R. P., Fesik S. W. Discovering High-Affinity Ligands for Proteins: SAR by NMR. Science; Nov 29, 1996; 274, 5292; ProQuest Central pg. 1531.">Shuker S. B., Hajduk P. J., Meadows R. P., Fesik S. W. Discovering High-Affinity Ligands for Proteins: SAR by NMR. Science; Nov 29, 1996; 274, 5292; ProQuest Central pg. 1531.</ref> In other words, NMR is used to identify the components responsible for binding and analyze the relationship between the ligand and the biological target.
+
| scope="col" width="5000px" | Structure-activity relationship (SAR) by NMR is one tool that can be used to design and develop new drugs. This is the process in which NMR is used to identify the components responsible for binding to the protein. NMR is also used to analyze the relationships between these components to determine where the protein binding sites are located and how the ligand interacts with those sites.<ref name="Shuker S. B., Hajduk P. J., Meadows R. P., Fesik S. W. Discovering High-Affinity Ligands for Proteins: SAR by NMR. Science; Nov 29, 1996; 274, 5292; ProQuest Central pg. 1531.">Shuker S. B., Hajduk P. J., Meadows R. P., Fesik S. W. Discovering High-Affinity Ligands for Proteins: SAR by NMR. Science; Nov 29, 1996; 274, 5292; ProQuest Central pg. 1531.</ref>
|}
|}

Revision as of 23:56, 27 November 2012

Drug Design: Fragment-Based Drug Discovery

Bcl-xl in complex with ABT-737 (PDB entry 2yxj)

Drag the structure with the mouse to rotate

References

  1. 1.0 1.1 Shuker S. B., Hajduk P. J., Meadows R. P., Fesik S. W. Discovering High-Affinity Ligands for Proteins: SAR by NMR. Science; Nov 29, 1996; 274, 5292; ProQuest Central pg. 1531.
  2. Oltersdorf T., Elmore S. W., Shoemaker A. R. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Vol 435|2 June 2005|doi:10.1038/nature03579
  3. Pandit D. LIGAND-BASED DRUG DESIGN: I. CONFORMATIONAL STUDIES OF GBR 12909 ANALOGS AS COCAINE ANTAGONISTS; II. 3D-QSAR STUDIES OF SALVINORIN A ANALOGS AS εΑΡΡΑ OPIOID AGONISTS. http://archives.njit.edu/vol01/etd/2000s/2007/njit-etd2007-051/njit-etd2007-051.pdf

Proteopedia Page Contributors and Editors (what is this?)

Justin Weekley, Arthur Cox, Jaime Prilusky

Personal tools