Tutorial:Basic Chemistry Topics

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 260: Line 260:
='''Substrates'''=
='''Substrates'''=
-
A substrate is a compound that is acted upon by an enzyme. The substrate binds the active site of the enzyme, once bound the enzyme uses the substrate to produce a chemical response to produce the product. After the substrate has produced a chemical response, it is released from the active site of the enzyme and you are left with the product and the enzyme. <ref name="substrate">Wikipedia. Wikipedia, 4 Nov. 2012. Web. 7 Nov. 2012. <http://en.wikipedia.org/wiki/Enzyme_substrate_(biology)</ref>
+
A substrate is a compound that is acted upon by an enzyme. The substrate binds the active site of the enzyme. Once bound, the enzyme uses the substrate to produce a chemical response that produces the product. After the chemical response, the substrate is released from the active site and you are left with the enzyme and the product. <ref name="substrate">Wikipedia. Wikipedia, 4 Nov. 2012. Web. 7 Nov. 2012. <http://en.wikipedia.org/wiki/Enzyme_substrate_(biology)</ref>
[[Image:ES.png| thumb | center | 600px ]]
[[Image:ES.png| thumb | center | 600px ]]
-
This equation is a representation of the interaction between a substrate and an enzyme. The enzyme (E) and substrate (S) join together at the enzymes active site to form a enzyme-substrate (ES) complex. Once the enzyme releases the substrate you are left with the final product (P) and the enzyme (E).
+
 
 +
This equation is a representation of the interaction between a substrate and an enzyme. The enzyme (E) and substrate (S) join together at the enzyme’s active site to form an enzyme-substrate (ES) complex. Once the enzyme releases the substrate you are left with the final product (P) and the enzyme (E).
[[Image:Acetylation reconstruction.png| thumb | center | 600px | Acetylation Reaction <ref name="Article" />]]
[[Image:Acetylation reconstruction.png| thumb | center | 600px | Acetylation Reaction <ref name="Article" />]]
 +
As discussed in the introduction, AAC(2’) Ic has a similar fold to that of the GNAT superfamily. The GNAT fold described in the study has the function of acetylation, the addition of an acetyl group. An acetyl functional group is composed of CH3CO. It is important to note that the discovery of the GNAT fold lead to the understanding of the function of AAC(2’). The reaction above shows the acetylation of the aminoglycoside antibiotic, causing its inactivity. From the reaction centered above you see the aminoglycoside antibiotic (Ribostamycin) being acted upon by the enzyme AAC(2’). AAC(2’) is adding and acetyl group to the antibiotic using the substrate CoA. On the right side of the arrow you can see the final product of the acetylation, the antibiotic and acyl group bound. The Acetyl group is circled, so you are able to locate it throughout the reaction. <ref name="Article" />
As discussed in the introduction, AAC(2’) Ic has a similar fold to that of the GNAT superfamily. The GNAT fold described in the study has the function of acetylation, the addition of an acetyl group. An acetyl functional group is composed of CH3CO. It is important to note that the discovery of the GNAT fold lead to the understanding of the function of AAC(2’). The reaction above shows the acetylation of the aminoglycoside antibiotic, causing its inactivity. From the reaction centered above you see the aminoglycoside antibiotic (Ribostamycin) being acted upon by the enzyme AAC(2’). AAC(2’) is adding and acetyl group to the antibiotic using the substrate CoA. On the right side of the arrow you can see the final product of the acetylation, the antibiotic and acyl group bound. The Acetyl group is circled, so you are able to locate it throughout the reaction. <ref name="Article" />

Revision as of 06:31, 1 December 2012

This tutorial is designed for entry-level college students with some basic chemistry knowledge (Ages 18-22)
[1]

Purpose of the Tutorial

  • This tutorial is intended as a beneficial learning/teaching aid for an entry-level chemistry college student with some basic chemistry knowledge. Various general chemistry concepts are explained using a research article as an example. Applying general chemistry to a research article will allow the students to see the impact they can have on the research world in the future by applying their knowledge.


Summary: Scientific Research Article

The molecule to left is from the article "Aminoglycoside 2'-N-acetyltransferase from Mycobacterium tuberculosis-Complex with Coenzyme A and Tobramycin" published in Nature Structural Biology.[2]. The study focused on aminoglycoside 2’- N- acetyltransferase (AAC (2’)- Ic), an enzyme. This enzyme is a protein that speeds the rate of the reaction it catalyzes.

This study determined the structure of AAC (2’)-Ic from Mycobacterium tuberculosis, a pathogen. This pathogen is a microorganism that causes tuberculosis (TB), which typically affects the lungs, but can affect other parts of the body as well. The specific structure/protein fold of AAC (2’)-Ic places it in the GCN5-related N-acetyltransferase (GNAT) superfamily. The GNAT superfamily is a group of enzymes that are similar in structure. The protein fold is important because it determines the function of the compound.[2]

The GNAT family is a group of acetylating enzymes. Acetylation is the addition of CH3CO functional group onto a compound. Although the physiological function of AAC(2’)-Ic is not certain, the discovery of the GNAT fold allowed researchers to classify AAC (2’)-Ic as an acetylating enzyme. Mycothiol is catalyzed by AAC (2’)-Ic to acetylate the aminoglycoside antibiotic, Tobramycin. When this occurs the aminoglycoside antibiotic becomes inactive. The basis of this study is important because when pathogens become resistant or inactive to commonly used antibiotics, an infection that used to be easily cured can now become severe and life threatening.[2]


PDB ID 1m4d

Drag the structure with the mouse to rotate

References

  1. Vetting, M. W., et al. "Aminoglycoside 2'-N-acetyltransferase from Mycobacterium tuberculosis-Complex with Coenzyme A and Tobramycin." RCSB Protien DataBase. N.p., 28 Aug.2002. Web. 13 July 2011. http://www.rcsb.org/pdb/explore/explore.do?structureId=1M4D
  2. 2.0 2.1 2.2 2.3 2.4 Vetting, Matthew W., et al. "Aminoglycoside 2'-N-acetyltransferase from Mycobacterium tuberculosis-Complex with Coenzyme A and Tobramycin."Nature Structural Biology 9.9 (2002): 653-58. Print.
  3. 3.0 3.1 Wikipedia. Wikipedia, 4 Nov. 2012. Web. 7 Nov. 2012. <http://en.wikipedia.org/wiki/Enzyme_substrate_(biology)
  4. User:Cepheus. "Periodic Table." Wikipedia. N.p., 26 Feb. 2007. Web. 26 Nov. 2012. <http://en.wikipedia.org/wiki/File:Periodic_table.svg>.
  5. . "File:NaF.gif." Wikipedia. Wikipedia, 17 June 2011. Web. 31 Oct. 2012.<http://en.wikipedia.org/wiki/File:NaF.gif.
  6. Maňas, Michal, trans. "File:3D model hydrogen bonds in water.jpg." Wikimedia Commons. Wikimedia Commons, 3 Dec. 2007. Web. 31 Oct. 2012 <http://commons.wikimedia.org/wiki/File:3D_model_hydrogen_bonds_in_water.jpg.
  7. "Tobramycin." Wikipedia. Wikipedia, n.d. Web. 26 Nov. 2012.<http://en.wikipedia.org/wiki/Tobramycin>.

Proteopedia Page Contributors and Editors (what is this?)

Alyssa Graham

Personal tools