Sandbox Reserved 390

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 3: Line 3:
The purpose of this page is to explain a semisynthetic derivative of [http://en.wikipedia.org/wiki/Podophyllotoxin podophyllotoxin] [[Image:PODO.png|thumb|right|50 px|Chemical structure of podophyllotoxin]] (etoposide) that demonstrates antitumor activity by inhibiting DNA topoisomerase II, thereby inhibiting DNA re-ligation which lead to apoptosis of the cancer cell and also, to describe the mechanisms of resistance of etoposide.
The purpose of this page is to explain a semisynthetic derivative of [http://en.wikipedia.org/wiki/Podophyllotoxin podophyllotoxin] [[Image:PODO.png|thumb|right|50 px|Chemical structure of podophyllotoxin]] (etoposide) that demonstrates antitumor activity by inhibiting DNA topoisomerase II, thereby inhibiting DNA re-ligation which lead to apoptosis of the cancer cell and also, to describe the mechanisms of resistance of etoposide.
-
<ref>doi:10.1038/nrc823</ref>
 
__TOC__
__TOC__
Line 25: Line 24:
'''1.''' Decreased accumulation via increased P-glycoprotein (a multidrug resistance): This drug resistance mechanism is characterized by decreased intracellular accumulation of drug facilitated by overexpression of the human multidrug resistance (mdrl) gene, causing overproduction of P-glycoprotein. This cell membrane protein acts as an export pump for a wide variety of unrelated foreign natural products. By maintaining lower intracellular levels of drug, lower drug concentration would be available to the target, which is topoisomerase II.
'''1.''' Decreased accumulation via increased P-glycoprotein (a multidrug resistance): This drug resistance mechanism is characterized by decreased intracellular accumulation of drug facilitated by overexpression of the human multidrug resistance (mdrl) gene, causing overproduction of P-glycoprotein. This cell membrane protein acts as an export pump for a wide variety of unrelated foreign natural products. By maintaining lower intracellular levels of drug, lower drug concentration would be available to the target, which is topoisomerase II.
-
[[Image:PGP.gif|thumb|right|500 px|P-glycoprotein as a transmembrane drug efflux pump]]
+
[[Image:PGP.gif|thumb|right|500 px|P-glycoprotein as a transmembrane drug efflux pump<ref>doi:10.1038/nrc823</ref>
 +
]]
'''2.''' Changes in target proteins: This mechanism relates directly to the target enzyme; Either low enzyme levels or altered sensitivity of the enzyme for the drug confers resistance to that drug. This mechanism also confers a form of multidrug resistance; in that resistance to one topoisomerase II inhibitor through decreased or altered topoisomerase activity generally translates into resistance to most other topoisomerase II inhibitors.
'''2.''' Changes in target proteins: This mechanism relates directly to the target enzyme; Either low enzyme levels or altered sensitivity of the enzyme for the drug confers resistance to that drug. This mechanism also confers a form of multidrug resistance; in that resistance to one topoisomerase II inhibitor through decreased or altered topoisomerase activity generally translates into resistance to most other topoisomerase II inhibitors.

Revision as of 13:06, 3 December 2012

Human topoisomerase II beta in complex with DNA and etoposide

Structure of the human topoisomeraseIIbcore-DNA cleavage complex stabilized by the anticancer drug etoposide. (PDB entry 3QX3)

Drag the structure with the mouse to rotate


References

  1. Wu CC, Li TK, Farh L, Lin LY, Lin TS, Yu YJ, Yen TJ, Chiang CW, Chan NL. Structural basis of type II topoisomerase inhibition by the anticancer drug etoposide. Science. 2011 Jul 22;333(6041):459-62. PMID:21778401 doi:10.1126/science.1204117
  2. Kathryn L. Gilroy, Chrysoula Leontiou, Kay Padget, Jeremy H. Lakey and Caroline A. Austin* "mAMSA resistant human topoisomerase IIβ mutation G465D has reduced ATP hydrolysis activity” Oxford JournalsLife Sciences Nucleic Acids Research Volume 34, Issue 5Pp. 1597-1607. DOI: 10.1093/nar/gkl057
  3. Wu CC, Li TK, Farh L, Lin LY, Lin TS, Yu YJ, Yen TJ, Chiang CW, Chan NL. Structural basis of type II topoisomerase inhibition by the anticancer drug etoposide. Science. 2011 Jul 22;333(6041):459-62. PMID:21778401 doi:10.1126/science.1204117
  4. Sorrentino BP. Gene therapy to protect haematopoietic cells from cytotoxic cancer drugs. Nat Rev Cancer. 2002 Jun;2(6):431-41. PMID:12189385 doi:10.1038/nrc823
Personal tools