Caspase-3 Regulatory Mechanisms
From Proteopedia
(→Caspase-3 Active Site and Loop Bundle Analysis) |
(→Caspase-3 Active Site and Loop Bundle Analysis) |
||
Line 68: | Line 68: | ||
The active site of caspase-3 utilizes a cysteine-histidine dyad, which has an exquisite specificity for cleaving after aspartate residues. Therefore, caspase-3, by definition, will have an aspartate in the <scene name='Caspase-3_Regulatory_Mechanisms/P1/2'>P1</scene> pocket. Uncleavable peptide substrates are often used in crystallography to bind to the active site. This will orient the delicate but deadly active site loops in order to facilitate the visualization of the chemistry of cleavage. The nucleophilic Cysteine 163 will work in concert with the second active site residue, Histidine 121, to attack the substrate. This reaction will ultimately cleave the peptide bond following the aspartate. | The active site of caspase-3 utilizes a cysteine-histidine dyad, which has an exquisite specificity for cleaving after aspartate residues. Therefore, caspase-3, by definition, will have an aspartate in the <scene name='Caspase-3_Regulatory_Mechanisms/P1/2'>P1</scene> pocket. Uncleavable peptide substrates are often used in crystallography to bind to the active site. This will orient the delicate but deadly active site loops in order to facilitate the visualization of the chemistry of cleavage. The nucleophilic Cysteine 163 will work in concert with the second active site residue, Histidine 121, to attack the substrate. This reaction will ultimately cleave the peptide bond following the aspartate. | ||
- | In order to be active and cleave the specific apoptotic targets, Caspase-3 must be able to first bind substrate. There are several essential interactions responsible for securing the substrate before cleavage. The binding pocket at <scene name='Caspase-3_Regulatory_Mechanisms/P2/2'>P2</scene> is a hydrophobic patch made up of Y204, W206, and F250. This creates a hydrophobic pocket for the P2 residue (in this casse, valine). At <scene name='Caspase-3_Regulatory_Mechanisms/P4/2'>P4</scene> there are contacts that contribute to the specificity of caspase-3. | + | In order to be active and cleave the specific apoptotic targets, Caspase-3 must be able to first bind substrate. There are several essential interactions responsible for securing the substrate before cleavage. The binding pocket at <scene name='Caspase-3_Regulatory_Mechanisms/P2/2'>P2</scene> is a hydrophobic patch made up of Y204, W206, and F250 (dark blue residues). This creates a hydrophobic pocket for the P2 residue (in this casse, valine). At <scene name='Caspase-3_Regulatory_Mechanisms/P4/2'>P4</scene> there are contacts that contribute to the specificity of caspase-3. Asparagine 208 hydrogen bonds with an aspartate at P4 along with the backbone nitrogen of F250, creating a preference for a carboxylic acid at the P4 site. |
- | + | ||
+ | === A Curious Salt Bridge=== | ||
</StructureSection> | </StructureSection> |
Revision as of 23:41, 12 December 2012
Introduction
Caspases are cysteine-dependent aspartic acid proteases and are the key facilitators of apoptosis or programmed cell death. Apoptosis is tightly regulated by these caspases, and dysregulation of caspase functions have been implicated in wide variety of diseases such as neurodegeneration, cancer, heart disease and some metabolic disorders. As such, caspases are considered to be attractive drug targets to treat these disorders.
Existing as proenzymes, caspases undergo proteolytic processing at conserved aspartate residues in their intersubunit linker to produce the large and small subunit. These subunits then dimerize to form the active enzyme. Any apoptotic signal received by the cell results in sequential activation of caspases. Upstream or initator caspases (-2,-8, -9 and -10) are first activated by forming a holoenzyme wherein they associate with another protein platform or adaptor protein. Once active, initiator caspases cleave and activate the executioner caspases (-3, -6 and -7) which in turn cleave their respective protein targets initiating cell death.
Caspase-3 structure
Caspase-3 Regulation
|
Caspase-3 Active Site and Loop Bundle Analysis
|
Proteopedia Page Contributors and Editors (what is this?)
Scott Eron, Banyuhay P. Serrano, Alexander Berchansky, Yunlong Zhao, Jaime Prilusky, Michal Harel