1v0j

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 4: Line 4:
==Overview==
==Overview==
-
Uridine diphosphogalactofuranose (UDP-Galf) is the precursor of the, d-galactofuranose sugar found in bacterial and parasitic cell walls, including those of many pathogens. UDP-Galf is made from, UDP-galactopyranose by the enzyme UDP-galactopyranose mutase. The enzyme, requires the reduced FADH- co-factor for activity. The structure of the, Mycobacterium tuberculosis mutase with FAD has been determined to 2.25 A., The structures of Klebsiella pneumoniae mutase with FAD and with FADH-, bound have been determined to 2.2 A and 2.35 A resolution, respectively., This is the first report of the FADH(-)-containing structure. Two, flavin-dependent mechanisms for the enzyme have been proposed, one, which, involves a covalent adduct being formed at the flavin and the other based, on electron transfer. Using our structural data, we have examined the two, mechanisms. The electron transfer mechanism is consistent with the, structural data, not surprisingly, since it makes fewer demands on the, precise positioning of atoms. A model based on a covalent adduct FAD, requires repositioning of the enzyme active site and would appear to, require the isoalloxazine ring of FADH- to buckle in a particular way., However, the FADH- structure reveals that the isoalloxazine ring buckles, in the opposite sense, this apparently requires the covalent adduct to, trigger profound conformational changes in the protein or to buckle the, FADH- opposite to that seen in the apo structure.
+
Uridine diphosphogalactofuranose (UDP-Galf) is the precursor of the d-galactofuranose sugar found in bacterial and parasitic cell walls, including those of many pathogens. UDP-Galf is made from UDP-galactopyranose by the enzyme UDP-galactopyranose mutase. The enzyme requires the reduced FADH- co-factor for activity. The structure of the Mycobacterium tuberculosis mutase with FAD has been determined to 2.25 A. The structures of Klebsiella pneumoniae mutase with FAD and with FADH- bound have been determined to 2.2 A and 2.35 A resolution, respectively. This is the first report of the FADH(-)-containing structure. Two flavin-dependent mechanisms for the enzyme have been proposed, one, which involves a covalent adduct being formed at the flavin and the other based on electron transfer. Using our structural data, we have examined the two mechanisms. The electron transfer mechanism is consistent with the structural data, not surprisingly, since it makes fewer demands on the precise positioning of atoms. A model based on a covalent adduct FAD requires repositioning of the enzyme active site and would appear to require the isoalloxazine ring of FADH- to buckle in a particular way. However, the FADH- structure reveals that the isoalloxazine ring buckles in the opposite sense, this apparently requires the covalent adduct to trigger profound conformational changes in the protein or to buckle the FADH- opposite to that seen in the apo structure.
==About this Structure==
==About this Structure==
Line 15: Line 15:
[[Category: UDP-galactopyranose mutase]]
[[Category: UDP-galactopyranose mutase]]
[[Category: Beis, K.]]
[[Category: Beis, K.]]
-
[[Category: Naismith, J.H.]]
+
[[Category: Naismith, J H.]]
[[Category: BCN]]
[[Category: BCN]]
[[Category: FAD]]
[[Category: FAD]]
Line 22: Line 22:
[[Category: mutase]]
[[Category: mutase]]
-
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Sun Feb 3 10:13:21 2008''
+
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Feb 21 15:30:17 2008''

Revision as of 13:30, 21 February 2008


1v0j, resolution 2.25Å

Drag the structure with the mouse to rotate

UDP-GALACTOPYRANOSE MUTASE FROM MYCOBACTERIUM TUBERCULOSIS

Overview

Uridine diphosphogalactofuranose (UDP-Galf) is the precursor of the d-galactofuranose sugar found in bacterial and parasitic cell walls, including those of many pathogens. UDP-Galf is made from UDP-galactopyranose by the enzyme UDP-galactopyranose mutase. The enzyme requires the reduced FADH- co-factor for activity. The structure of the Mycobacterium tuberculosis mutase with FAD has been determined to 2.25 A. The structures of Klebsiella pneumoniae mutase with FAD and with FADH- bound have been determined to 2.2 A and 2.35 A resolution, respectively. This is the first report of the FADH(-)-containing structure. Two flavin-dependent mechanisms for the enzyme have been proposed, one, which involves a covalent adduct being formed at the flavin and the other based on electron transfer. Using our structural data, we have examined the two mechanisms. The electron transfer mechanism is consistent with the structural data, not surprisingly, since it makes fewer demands on the precise positioning of atoms. A model based on a covalent adduct FAD requires repositioning of the enzyme active site and would appear to require the isoalloxazine ring of FADH- to buckle in a particular way. However, the FADH- structure reveals that the isoalloxazine ring buckles in the opposite sense, this apparently requires the covalent adduct to trigger profound conformational changes in the protein or to buckle the FADH- opposite to that seen in the apo structure.

About this Structure

1V0J is a Single protein structure of sequence from Mycobacterium tuberculosis with and as ligands. Active as UDP-galactopyranose mutase, with EC number 5.4.99.9 Known structural/functional Site: . Full crystallographic information is available from OCA.

Reference

Crystal structures of Mycobacteria tuberculosis and Klebsiella pneumoniae UDP-galactopyranose mutase in the oxidised state and Klebsiella pneumoniae UDP-galactopyranose mutase in the (active) reduced state., Beis K, Srikannathasan V, Liu H, Fullerton SW, Bamford VA, Sanders DA, Whitfield C, McNeil MR, Naismith JH, J Mol Biol. 2005 May 13;348(4):971-82. PMID:15843027

Page seeded by OCA on Thu Feb 21 15:30:17 2008

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools