1x7n
From Proteopedia
(New page: 200px<br /><applet load="1x7n" size="450" color="white" frame="true" align="right" spinBox="true" caption="1x7n, resolution 1.89Å" /> '''The crystal structur...) |
|||
Line 1: | Line 1: | ||
- | [[Image:1x7n.gif|left|200px]]<br /><applet load="1x7n" size=" | + | [[Image:1x7n.gif|left|200px]]<br /><applet load="1x7n" size="350" color="white" frame="true" align="right" spinBox="true" |
caption="1x7n, resolution 1.89Å" /> | caption="1x7n, resolution 1.89Å" /> | ||
'''The crystal structure of Pyrococcus furiosus phosphoglucose isomerase with bound 5-phospho-D-arabinonate and Manganese'''<br /> | '''The crystal structure of Pyrococcus furiosus phosphoglucose isomerase with bound 5-phospho-D-arabinonate and Manganese'''<br /> | ||
==Overview== | ==Overview== | ||
- | Pyrococcus furiosus phosphoglucose isomerase (PfPGI) is a metal-containing | + | Pyrococcus furiosus phosphoglucose isomerase (PfPGI) is a metal-containing enzyme that catalyses the interconversion of glucose 6-phosphate (G6P) and fructose 6-phosphate (F6P). The recent structure of PfPGI has confirmed the hypothesis that the enzyme belongs to the cupin superfamily and identified the position of the active site. This fold is distinct from the alphabetaalpha sandwich fold commonly seen in phosphoglucose isomerases (PGIs) that are found in bacteria, eukaryotes and some archaea. Whilst the mechanism of the latter family is thought to proceed through a cis-enediol intermediate, analysis of the structure of PfPGI in the presence of inhibitors has led to the suggestion that the mechanism of this enzyme involves the metal-dependent direct transfer of a hydride between C1 and C2 atoms of the substrate. To gain further insight in the reaction mechanism of PfPGI, the structures of the free enzyme and the complexes with the inhibitor, 5-phospho-d-arabinonate (5PAA) in the presence and absence of metal have been determined. Comparison of these structures with those of equivalent complexes of the eukaryotic PGIs reveals similarities at the active site in the disposition of possible catalytic residues. These include the presence of a glutamic acid residue, Glu97 in PfPGI, which occupies the same position relative to the inhibitor as that of the glutamate that is thought to function as the catalytic base in the eukaryal-type PGIs. These similarities suggest that aspects of the catalytic mechanisms of these two structurally unrelated PGIs may be similar and based on an enediol intermediate. |
==About this Structure== | ==About this Structure== | ||
- | 1X7N is a [http://en.wikipedia.org/wiki/Single_protein Single protein] structure of sequence from [http://en.wikipedia.org/wiki/Pyrococcus_furiosus Pyrococcus furiosus] with MN and PA5 as [http://en.wikipedia.org/wiki/ligands ligands]. Active as [http://en.wikipedia.org/wiki/Glucose-6-phosphate_isomerase Glucose-6-phosphate isomerase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=5.3.1.9 5.3.1.9] Full crystallographic information is available from [http:// | + | 1X7N is a [http://en.wikipedia.org/wiki/Single_protein Single protein] structure of sequence from [http://en.wikipedia.org/wiki/Pyrococcus_furiosus Pyrococcus furiosus] with <scene name='pdbligand=MN:'>MN</scene> and <scene name='pdbligand=PA5:'>PA5</scene> as [http://en.wikipedia.org/wiki/ligands ligands]. Active as [http://en.wikipedia.org/wiki/Glucose-6-phosphate_isomerase Glucose-6-phosphate isomerase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=5.3.1.9 5.3.1.9] Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1X7N OCA]. |
==Reference== | ==Reference== | ||
Line 15: | Line 15: | ||
[[Category: Single protein]] | [[Category: Single protein]] | ||
[[Category: Akerboom, J.]] | [[Category: Akerboom, J.]] | ||
- | [[Category: Baker, P | + | [[Category: Baker, P J.]] |
- | [[Category: Berrisford, J | + | [[Category: Berrisford, J M.]] |
- | [[Category: Blackburn, G | + | [[Category: Blackburn, G M.]] |
[[Category: Brouns, S.]] | [[Category: Brouns, S.]] | ||
[[Category: Hardre, R.]] | [[Category: Hardre, R.]] | ||
- | [[Category: Murray, I | + | [[Category: Murray, I A.]] |
- | [[Category: Oost, J | + | [[Category: Oost, J van der.]] |
- | [[Category: Rice, D | + | [[Category: Rice, D W.]] |
[[Category: Salmon, L.]] | [[Category: Salmon, L.]] | ||
- | [[Category: Sedelnikova, S | + | [[Category: Sedelnikova, S E.]] |
- | [[Category: Turnbull, A | + | [[Category: Turnbull, A P.]] |
[[Category: MN]] | [[Category: MN]] | ||
[[Category: PA5]] | [[Category: PA5]] | ||
Line 35: | Line 35: | ||
[[Category: pyrococcus furiosus]] | [[Category: pyrococcus furiosus]] | ||
- | ''Page seeded by [http:// | + | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Feb 21 15:51:50 2008'' |
Revision as of 13:51, 21 February 2008
|
The crystal structure of Pyrococcus furiosus phosphoglucose isomerase with bound 5-phospho-D-arabinonate and Manganese
Overview
Pyrococcus furiosus phosphoglucose isomerase (PfPGI) is a metal-containing enzyme that catalyses the interconversion of glucose 6-phosphate (G6P) and fructose 6-phosphate (F6P). The recent structure of PfPGI has confirmed the hypothesis that the enzyme belongs to the cupin superfamily and identified the position of the active site. This fold is distinct from the alphabetaalpha sandwich fold commonly seen in phosphoglucose isomerases (PGIs) that are found in bacteria, eukaryotes and some archaea. Whilst the mechanism of the latter family is thought to proceed through a cis-enediol intermediate, analysis of the structure of PfPGI in the presence of inhibitors has led to the suggestion that the mechanism of this enzyme involves the metal-dependent direct transfer of a hydride between C1 and C2 atoms of the substrate. To gain further insight in the reaction mechanism of PfPGI, the structures of the free enzyme and the complexes with the inhibitor, 5-phospho-d-arabinonate (5PAA) in the presence and absence of metal have been determined. Comparison of these structures with those of equivalent complexes of the eukaryotic PGIs reveals similarities at the active site in the disposition of possible catalytic residues. These include the presence of a glutamic acid residue, Glu97 in PfPGI, which occupies the same position relative to the inhibitor as that of the glutamate that is thought to function as the catalytic base in the eukaryal-type PGIs. These similarities suggest that aspects of the catalytic mechanisms of these two structurally unrelated PGIs may be similar and based on an enediol intermediate.
About this Structure
1X7N is a Single protein structure of sequence from Pyrococcus furiosus with and as ligands. Active as Glucose-6-phosphate isomerase, with EC number 5.3.1.9 Full crystallographic information is available from OCA.
Reference
The structures of inhibitor complexes of Pyrococcus furiosus phosphoglucose isomerase provide insights into substrate binding and catalysis., Berrisford JM, Akerboom J, Brouns S, Sedelnikova SE, Turnbull AP, van der Oost J, Salmon L, Hardre R, Murray IA, Blackburn GM, Rice DW, Baker PJ, J Mol Biol. 2004 Oct 22;343(3):649-57. PMID:15465052
Page seeded by OCA on Thu Feb 21 15:51:50 2008
Categories: Glucose-6-phosphate isomerase | Pyrococcus furiosus | Single protein | Akerboom, J. | Baker, P J. | Berrisford, J M. | Blackburn, G M. | Brouns, S. | Hardre, R. | Murray, I A. | Oost, J van der. | Rice, D W. | Salmon, L. | Sedelnikova, S E. | Turnbull, A P. | MN | PA5 | 5-phospho-d-arabinonate | Cupin superfamily | Extremeophile | Hyperthermophile | Phosphoglucose isomerase