1zn2
From Proteopedia
(New page: 200px<br /><applet load="1zn2" size="350" color="white" frame="true" align="right" spinBox="true" caption="1zn2, resolution 2.91Å" /> '''Low Resolution Struc...) |
|||
Line 4: | Line 4: | ||
==Overview== | ==Overview== | ||
- | StyR belongs to the FixJ subfamily of signal transduction response | + | StyR belongs to the FixJ subfamily of signal transduction response regulators; it controls transcription of the styABCD operon coding for styrene catabolism in Pseudomonas fluorescens ST. The crystal structure of unphosphorylated StyR is reported at 2.2 A resolution. StyR is composed of an N-terminal regulatory domain (StyR-N) and a C-terminal DNA binding domain (StyR-C). The two domains are separated by an elongated linker alpha helix (34 residues), a new feature in known response regulator structures. StyR-C is structured similarly to the DNA binding domain of the response regulator NarL. StyR-N shows structural reorganization of the phosphate receiving region involved in activation/homodimerization: specific residues adopt an "active-like" conformation, and the alpha4 helix, involved in dimerization of the homologous FixJ response regulator, is trimmed to just one helical turn. Overall, structural considerations suggest that phosphorylation may act as an allosteric switch, shifting a preexisting StyR equilibrium toward the active, dimeric, DNA binding form. |
==About this Structure== | ==About this Structure== | ||
Line 23: | Line 23: | ||
[[Category: transcription regulation]] | [[Category: transcription regulation]] | ||
- | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on | + | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Feb 21 16:17:11 2008'' |
Revision as of 14:17, 21 February 2008
|
Low Resolution Structure of Response Regulator StyR
Overview
StyR belongs to the FixJ subfamily of signal transduction response regulators; it controls transcription of the styABCD operon coding for styrene catabolism in Pseudomonas fluorescens ST. The crystal structure of unphosphorylated StyR is reported at 2.2 A resolution. StyR is composed of an N-terminal regulatory domain (StyR-N) and a C-terminal DNA binding domain (StyR-C). The two domains are separated by an elongated linker alpha helix (34 residues), a new feature in known response regulator structures. StyR-C is structured similarly to the DNA binding domain of the response regulator NarL. StyR-N shows structural reorganization of the phosphate receiving region involved in activation/homodimerization: specific residues adopt an "active-like" conformation, and the alpha4 helix, involved in dimerization of the homologous FixJ response regulator, is trimmed to just one helical turn. Overall, structural considerations suggest that phosphorylation may act as an allosteric switch, shifting a preexisting StyR equilibrium toward the active, dimeric, DNA binding form.
About this Structure
1ZN2 is a Single protein structure of sequence from Pseudomonas fluorescens with as ligand. Full crystallographic information is available from OCA.
Reference
An active-like structure in the unphosphorylated StyR response regulator suggests a phosphorylation- dependent allosteric activation mechanism., Milani M, Leoni L, Rampioni G, Zennaro E, Ascenzi P, Bolognesi M, Structure. 2005 Sep;13(9):1289-97. PMID:16154086
Page seeded by OCA on Thu Feb 21 16:17:11 2008