Collagen
From Proteopedia
Line 1: | Line 1: | ||
+ | <StructureSection load='4clg' size='500' side='right' caption='Structure of Collagen (PDB entry [[4clg]] or [[1cag]])' scene='Collagen/Opening/4' >__NOTOC__ | ||
'''Collagen''', the most abundant protein in vertebrates, is an extracellular, inextensible fibrous protein that comprises the major protein component of such stress-bearing structures as bones, tendons, and ligaments. As with all fibrous proteins collagen is, for the most part, characterized by highly repetitive simple sequence. Here we study two model compounds (The structure of [[4clg]]<ref>J.M. Chen, C.E. Kung, S.H. Feairheller, E.M. Brown, AN ENERGETIC EVALUATION OF A "SMITH" COLLAGEN MICROFIBRIL MODEL, <I>J. Protein Chem., </I>'''10''', 535, 1991</ref> is shown in the applet to the right.) for naturally occurring collagen, in order to develop an understanding of the fibrous portion of collagen and to show how the different levels of protein structure come together and form a highly ordered and stable fiber. Collagen's properties of rigidity and inextensibility are due to this highly ordered structure. The part of collagen without structural order is not illustrated in this model. This part of the protein complex having a different amino acid composition, lysine and hydroxylysine are particularly important residues, is globular in nature and not as structurally organized. Lysine and hydroxylysine form covalent crosslinks in the protein complex, thereby adding strength and some flexibility to the fiber. This covalent crosslinking continues throughout life and produces a more rigid collagen and brittle bones in older adults. Go to [[Collagen Structure & Function]] for information on the functions and disorders of collagen and a link in the External Links section of this page for assembly movies of the triple helix of types I and IV. | '''Collagen''', the most abundant protein in vertebrates, is an extracellular, inextensible fibrous protein that comprises the major protein component of such stress-bearing structures as bones, tendons, and ligaments. As with all fibrous proteins collagen is, for the most part, characterized by highly repetitive simple sequence. Here we study two model compounds (The structure of [[4clg]]<ref>J.M. Chen, C.E. Kung, S.H. Feairheller, E.M. Brown, AN ENERGETIC EVALUATION OF A "SMITH" COLLAGEN MICROFIBRIL MODEL, <I>J. Protein Chem., </I>'''10''', 535, 1991</ref> is shown in the applet to the right.) for naturally occurring collagen, in order to develop an understanding of the fibrous portion of collagen and to show how the different levels of protein structure come together and form a highly ordered and stable fiber. Collagen's properties of rigidity and inextensibility are due to this highly ordered structure. The part of collagen without structural order is not illustrated in this model. This part of the protein complex having a different amino acid composition, lysine and hydroxylysine are particularly important residues, is globular in nature and not as structurally organized. Lysine and hydroxylysine form covalent crosslinks in the protein complex, thereby adding strength and some flexibility to the fiber. This covalent crosslinking continues throughout life and produces a more rigid collagen and brittle bones in older adults. Go to [[Collagen Structure & Function]] for information on the functions and disorders of collagen and a link in the External Links section of this page for assembly movies of the triple helix of types I and IV. | ||
Revision as of 09:55, 27 February 2013
|
| |||||||||||||
In order to convince yourself that there is a difference in the interchain distances in the area of the Ala, between Gly (Ala) and Pro which form intratropocollagen hydrogen bonds. Hydrogen bonds are not formed between Ala and Pro because the distances between the atoms forming the bonds are too great. The absence of the intratropocollagen hydrogen bonds, which is due to replacing Gly with a residue having a longer side chain, disrupts collagen's rope-like structure and is responsible for the symptoms of such human diseases as osteogenesis imperfecta and certain Ehlers-Danlos syndromes.
3D structures of collagen
Update January 2013
3hqv, 3hr2 – Col I – rat – fiber diffraction
1q7d - hCol I α1 integrin-binding domain – human
1u5m - hCol II α1 (mutant)
3dmw - hCol III α1residues 1158-1199 (mutant)
4ae2 - hCol III residues 1222-1466
4aej, 4ak3 - hCol III residues 1222-1466 (mutant)
1kth - hCol III α3 Kunitz type domain
1kun - hCol III α3 Kunitz type domain – NMR
1li1 - hCol IV α Nc1 domain
1t60, 1t61, 1m3d - Col IV α Nc1 domain – bovine
2knt, 1knt - hCol VI Kunitz type domain
1o91 - mCol VIII α1 Nc1 domain - mouse
2uur - hCol IX α1 Nc4 domain
1gr3 - hCol X α1 Nc1 domain
1b9p, 1b9q - Col IX α1 Nc4 domain (mutant)
3n3f – hCol XIV Nc1 domain
1dy2 - mCol XV endostatin domain
3hon, 3hsh - hCol XVIII tetramerization domain
1bnl - hCol XVIII C terminal domain
1dy0, 1dy1 - mCol XVIII endostatin domain
2ekj, 2ee3 - hCol XX α1 fn3 domain
2dkm - hCol XX α1 fn3 domain - NMR
3ipn – Col modified
1wzb, 1itt, 1k6f – Col triple helix
1zpx, 1sp7, 1sop – Col mini – hydra – NMR
2cuo, 2d3f, 2d3h, 2g66 – Col model peptides
Collagen complex with binding proteins
3ejh, 3gxe – hCol I α1 C-terminal + fibronectin
2fse – hCol II + MHC HLA-DR1
2seb - hCol II + MHC HLA-DR4
2v53 - hCol III α1 + Sparc
2wuh – hCol + discoidin domain receptor 2
1dzi – Col + integrin α2 domain
2f6a – Col + Col adhesin
References
External Links
Movies of assembly of triple helix of type I and IV collagen.
Contributor
Much of the content of this page was taken from an earlier non-Proteopedia version of Collagen which was in large part developed by Gretchen Heide Bisbort, a 1999 graduate of Messiah College.
Proteopedia Page Contributors and Editors (what is this?)
Karl Oberholser, Alexander Berchansky, Michal Harel, Ala Jelani, Jaime Prilusky, Eric Martz, Eran Hodis, David Canner, Judy Voet, Tilman Schirmer