2ccd

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 4: Line 4:
==Overview==
==Overview==
-
Inhibition of the enzyme Mycobacterium tuberculosis InhA (enoyl-acyl, carrier protein reductase) due to formation of an isonicotinoyl-NAD adduct, (IN-NAD) from isoniazid (INH) and nicotinamide adenine dinucleotide, cofactor is considered central to the mode of action of INH, a first-line, treatment for tuberculosis infection. INH action against mycobacteria, requires catalase-peroxidase (KatG) function, and IN-NAD adduct formation, is catalyzed in vitro by M. tuberculosis KatG under a variety of, conditions, yet a physiologically relevant approach to the process has not, emerged that allows scrutiny of the mechanism and the origins of INH, resistance in the most prevalent drug-resistant strain bearing, KatG[S315T]. In this report, we describe how hydrogen peroxide, delivered, at very low concentrations to ferric KatG, leads to efficient inhibition, of InhA due to formation of the IN-NAD adduct. The rate of adduct, formation mediated by wild-type KatG was about 20-fold greater than by the, isoniazid-resistant KatG[S315T] mutant under optimal conditions (H2O2, supplied along with NAD+ and INH). Slow adduct formation also occurs, starting with NADH and INH, in the presence of KatG even in the absence of, added peroxide, due to endogenous peroxide. The poor efficiency of the, KatG[S315T] mutant can be enhanced merely by increasing the concentration, of INH, consistent with this enzyme's reduced affinity for INH binding to, the resting enzyme and the catalytically competent enzyme intermediate, (Compound I). Origins of drug resistance in the KatG[S315T] mutant enzyme, are analyzed at the structural level through examination of the, three-dimensional X-ray crystal structure of the mutant enzyme.
+
Inhibition of the enzyme Mycobacterium tuberculosis InhA (enoyl-acyl carrier protein reductase) due to formation of an isonicotinoyl-NAD adduct (IN-NAD) from isoniazid (INH) and nicotinamide adenine dinucleotide cofactor is considered central to the mode of action of INH, a first-line treatment for tuberculosis infection. INH action against mycobacteria requires catalase-peroxidase (KatG) function, and IN-NAD adduct formation is catalyzed in vitro by M. tuberculosis KatG under a variety of conditions, yet a physiologically relevant approach to the process has not emerged that allows scrutiny of the mechanism and the origins of INH resistance in the most prevalent drug-resistant strain bearing KatG[S315T]. In this report, we describe how hydrogen peroxide, delivered at very low concentrations to ferric KatG, leads to efficient inhibition of InhA due to formation of the IN-NAD adduct. The rate of adduct formation mediated by wild-type KatG was about 20-fold greater than by the isoniazid-resistant KatG[S315T] mutant under optimal conditions (H2O2 supplied along with NAD+ and INH). Slow adduct formation also occurs starting with NADH and INH, in the presence of KatG even in the absence of added peroxide, due to endogenous peroxide. The poor efficiency of the KatG[S315T] mutant can be enhanced merely by increasing the concentration of INH, consistent with this enzyme's reduced affinity for INH binding to the resting enzyme and the catalytically competent enzyme intermediate (Compound I). Origins of drug resistance in the KatG[S315T] mutant enzyme are analyzed at the structural level through examination of the three-dimensional X-ray crystal structure of the mutant enzyme.
==About this Structure==
==About this Structure==
Line 13: Line 13:
[[Category: Mycobacterium tuberculosis]]
[[Category: Mycobacterium tuberculosis]]
[[Category: Single protein]]
[[Category: Single protein]]
-
[[Category: Sacchettini, J.C.]]
+
[[Category: Sacchettini, J C.]]
[[Category: Yu, H.]]
[[Category: Yu, H.]]
[[Category: HEM]]
[[Category: HEM]]
Line 26: Line 26:
[[Category: peroxidase]]
[[Category: peroxidase]]
-
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Sun Feb 3 10:33:52 2008''
+
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Feb 21 16:47:13 2008''

Revision as of 14:47, 21 February 2008


2ccd, resolution 2.10Å

Drag the structure with the mouse to rotate

CRYSTAL STRUCTURE OF THE CATALASE-PEROXIDASE (KATG) AND S315T MUTANT FROM MYCOBACTERIUM TUBERCULOSIS

Overview

Inhibition of the enzyme Mycobacterium tuberculosis InhA (enoyl-acyl carrier protein reductase) due to formation of an isonicotinoyl-NAD adduct (IN-NAD) from isoniazid (INH) and nicotinamide adenine dinucleotide cofactor is considered central to the mode of action of INH, a first-line treatment for tuberculosis infection. INH action against mycobacteria requires catalase-peroxidase (KatG) function, and IN-NAD adduct formation is catalyzed in vitro by M. tuberculosis KatG under a variety of conditions, yet a physiologically relevant approach to the process has not emerged that allows scrutiny of the mechanism and the origins of INH resistance in the most prevalent drug-resistant strain bearing KatG[S315T]. In this report, we describe how hydrogen peroxide, delivered at very low concentrations to ferric KatG, leads to efficient inhibition of InhA due to formation of the IN-NAD adduct. The rate of adduct formation mediated by wild-type KatG was about 20-fold greater than by the isoniazid-resistant KatG[S315T] mutant under optimal conditions (H2O2 supplied along with NAD+ and INH). Slow adduct formation also occurs starting with NADH and INH, in the presence of KatG even in the absence of added peroxide, due to endogenous peroxide. The poor efficiency of the KatG[S315T] mutant can be enhanced merely by increasing the concentration of INH, consistent with this enzyme's reduced affinity for INH binding to the resting enzyme and the catalytically competent enzyme intermediate (Compound I). Origins of drug resistance in the KatG[S315T] mutant enzyme are analyzed at the structural level through examination of the three-dimensional X-ray crystal structure of the mutant enzyme.

About this Structure

2CCD is a Single protein structure of sequence from Mycobacterium tuberculosis with as ligand. Known structural/functional Site: . Full crystallographic information is available from OCA.

Reference

Hydrogen peroxide-mediated isoniazid activation catalyzed by Mycobacterium tuberculosis catalase-peroxidase (KatG) and its S315T mutant., Zhao X, Yu H, Yu S, Wang F, Sacchettini JC, Magliozzo RS, Biochemistry. 2006 Apr 4;45(13):4131-40. PMID:16566587

Page seeded by OCA on Thu Feb 21 16:47:13 2008

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools