3bqd
From Proteopedia
m (Protected "3bqd" [edit=sysop:move=sysop]) |
|||
| Line 1: | Line 1: | ||
| - | [[Image:3bqd.png|left|200px]] | ||
| - | |||
{{STRUCTURE_3bqd| PDB=3bqd | SCENE= }} | {{STRUCTURE_3bqd| PDB=3bqd | SCENE= }} | ||
| - | |||
===Doubling the Size of the Glucocorticoid Receptor Ligand Binding Pocket by Deacylcortivazol=== | ===Doubling the Size of the Glucocorticoid Receptor Ligand Binding Pocket by Deacylcortivazol=== | ||
| + | {{ABSTRACT_PUBMED_18160712}} | ||
| - | + | ==Disease== | |
| + | [[http://www.uniprot.org/uniprot/GCR_HUMAN GCR_HUMAN]] Defects in NR3C1 are a cause of glucocorticoid resistance (GCRES) [MIM:[http://omim.org/entry/138040 138040]]; also known as cortisol resistance. It is a hypertensive, hyperandrogenic disorder characterized by increased serum cortisol concentrations. Inheritance is autosomal dominant.<ref>PMID:12050230</ref><ref>PMID:1704018</ref><ref>PMID:7683692</ref><ref>PMID:11589680</ref><ref>PMID:11701741</ref> [[http://www.uniprot.org/uniprot/NCOA1_HUMAN NCOA1_HUMAN]] Note=A chromosomal aberration involving NCOA1 is a cause of rhabdomyosarcoma. Translocation t(2;2)(q35;p23) with PAX3 generates the NCOA1-PAX3 oncogene consisting of the N-terminus part of PAX3 and the C-terminus part of NCOA1. The fusion protein acts as a transcriptional activator. Rhabdomyosarcoma is the most common soft tissue carcinoma in childhood, representing 5-8% of all malignancies in children. | ||
| + | |||
| + | ==Function== | ||
| + | [[http://www.uniprot.org/uniprot/GCR_HUMAN GCR_HUMAN]] Receptor for glucocorticoids (GC). Has a dual mode of action: as a transcription factor that binds to glucocorticoid response elements (GRE), both for nuclear and mitochondrial DNA, and as a modulator of other transcription factors. Affects inflammatory responses, cellular proliferation and differentiation in target tissues. Could act as a coactivator for STAT5-dependent transcription upon growth hormone (GH) stimulation and could reveal an essential role of hepatic GR in the control of body growth. Involved in chromatin remodeling. Plays a significant role in transactivation.<ref>PMID:21664385</ref> [[http://www.uniprot.org/uniprot/NCOA1_HUMAN NCOA1_HUMAN]] Nuclear receptor coactivator that directly binds nuclear receptors and stimulates the transcriptional activities in a hormone-dependent fashion. Involved in the coactivation of different nuclear receptors, such as for steroids (PGR, GR and ER), retinoids (RXRs), thyroid hormone (TRs) and prostanoids (PPARs). Also involved in coactivation mediated by STAT3, STAT5A, STAT5B and STAT6 transcription factors. Displays histone acetyltransferase activity toward H3 and H4; the relevance of such activity remains however unclear. Plays a central role in creating multisubunit coactivator complexes that act via remodeling of chromatin, and possibly acts by participating in both chromatin remodeling and recruitment of general transcription factors. Required with NCOA2 to control energy balance between white and brown adipose tissues. Required for mediating steroid hormone response. Isoform 2 has a higher thyroid hormone-dependent transactivation activity than isoform 1 and isoform 3.<ref>PMID:9427757</ref><ref>PMID:7481822</ref><ref>PMID:9223431</ref><ref>PMID:9296499</ref><ref>PMID:9223281</ref><ref>PMID:10449719</ref><ref>PMID:12954634</ref> | ||
==About this Structure== | ==About this Structure== | ||
| Line 11: | Line 13: | ||
==Reference== | ==Reference== | ||
| - | <ref group="xtra">PMID:018160712</ref><references group="xtra"/> | + | <ref group="xtra">PMID:018160712</ref><references group="xtra"/><references/> |
[[Category: Histone acetyltransferase]] | [[Category: Histone acetyltransferase]] | ||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
Revision as of 06:37, 25 March 2013
Contents |
Doubling the Size of the Glucocorticoid Receptor Ligand Binding Pocket by Deacylcortivazol
Template:ABSTRACT PUBMED 18160712
Disease
[GCR_HUMAN] Defects in NR3C1 are a cause of glucocorticoid resistance (GCRES) [MIM:138040]; also known as cortisol resistance. It is a hypertensive, hyperandrogenic disorder characterized by increased serum cortisol concentrations. Inheritance is autosomal dominant.[1][2][3][4][5] [NCOA1_HUMAN] Note=A chromosomal aberration involving NCOA1 is a cause of rhabdomyosarcoma. Translocation t(2;2)(q35;p23) with PAX3 generates the NCOA1-PAX3 oncogene consisting of the N-terminus part of PAX3 and the C-terminus part of NCOA1. The fusion protein acts as a transcriptional activator. Rhabdomyosarcoma is the most common soft tissue carcinoma in childhood, representing 5-8% of all malignancies in children.
Function
[GCR_HUMAN] Receptor for glucocorticoids (GC). Has a dual mode of action: as a transcription factor that binds to glucocorticoid response elements (GRE), both for nuclear and mitochondrial DNA, and as a modulator of other transcription factors. Affects inflammatory responses, cellular proliferation and differentiation in target tissues. Could act as a coactivator for STAT5-dependent transcription upon growth hormone (GH) stimulation and could reveal an essential role of hepatic GR in the control of body growth. Involved in chromatin remodeling. Plays a significant role in transactivation.[6] [NCOA1_HUMAN] Nuclear receptor coactivator that directly binds nuclear receptors and stimulates the transcriptional activities in a hormone-dependent fashion. Involved in the coactivation of different nuclear receptors, such as for steroids (PGR, GR and ER), retinoids (RXRs), thyroid hormone (TRs) and prostanoids (PPARs). Also involved in coactivation mediated by STAT3, STAT5A, STAT5B and STAT6 transcription factors. Displays histone acetyltransferase activity toward H3 and H4; the relevance of such activity remains however unclear. Plays a central role in creating multisubunit coactivator complexes that act via remodeling of chromatin, and possibly acts by participating in both chromatin remodeling and recruitment of general transcription factors. Required with NCOA2 to control energy balance between white and brown adipose tissues. Required for mediating steroid hormone response. Isoform 2 has a higher thyroid hormone-dependent transactivation activity than isoform 1 and isoform 3.[7][8][9][10][11][12][13]
About this Structure
3bqd is a 2 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA.
Reference
- Suino-Powell K, Xu Y, Zhang C, Tao YG, Tolbert WD, Simons SS Jr, Xu HE. Doubling the size of the glucocorticoid receptor ligand binding pocket by deacylcortivazol. Mol Cell Biol. 2008 Mar;28(6):1915-23. Epub 2007 Dec 26. PMID:18160712 doi:10.1128/MCB.01541-07
- ↑ Vottero A, Kino T, Combe H, Lecomte P, Chrousos GP. A novel, C-terminal dominant negative mutation of the GR causes familial glucocorticoid resistance through abnormal interactions with p160 steroid receptor coactivators. J Clin Endocrinol Metab. 2002 Jun;87(6):2658-67. PMID:12050230
- ↑ Hurley DM, Accili D, Stratakis CA, Karl M, Vamvakopoulos N, Rorer E, Constantine K, Taylor SI, Chrousos GP. Point mutation causing a single amino acid substitution in the hormone binding domain of the glucocorticoid receptor in familial glucocorticoid resistance. J Clin Invest. 1991 Feb;87(2):680-6. PMID:1704018 doi:http://dx.doi.org/10.1172/JCI115046
- ↑ Malchoff DM, Brufsky A, Reardon G, McDermott P, Javier EC, Bergh CH, Rowe D, Malchoff CD. A mutation of the glucocorticoid receptor in primary cortisol resistance. J Clin Invest. 1993 May;91(5):1918-25. PMID:7683692 doi:http://dx.doi.org/10.1172/JCI116410
- ↑ Ruiz M, Lind U, Gafvels M, Eggertsen G, Carlstedt-Duke J, Nilsson L, Holtmann M, Stierna P, Wikstrom AC, Werner S. Characterization of two novel mutations in the glucocorticoid receptor gene in patients with primary cortisol resistance. Clin Endocrinol (Oxf). 2001 Sep;55(3):363-71. PMID:11589680
- ↑ Kino T, Stauber RH, Resau JH, Pavlakis GN, Chrousos GP. Pathologic human GR mutant has a transdominant negative effect on the wild-type GR by inhibiting its translocation into the nucleus: importance of the ligand-binding domain for intracellular GR trafficking. J Clin Endocrinol Metab. 2001 Nov;86(11):5600-8. PMID:11701741
- ↑ Psarra AM, Sekeris CE. Glucocorticoids induce mitochondrial gene transcription in HepG2 cells: role of the mitochondrial glucocorticoid receptor. Biochim Biophys Acta. 2011 Oct;1813(10):1814-21. doi:, 10.1016/j.bbamcr.2011.05.014. Epub 2011 Jun 2. PMID:21664385 doi:10.1016/j.bbamcr.2011.05.014
- ↑ Kalkhoven E, Valentine JE, Heery DM, Parker MG. Isoforms of steroid receptor co-activator 1 differ in their ability to potentiate transcription by the oestrogen receptor. EMBO J. 1998 Jan 2;17(1):232-43. PMID:9427757 doi:10.1093/emboj/17.1.232
- ↑ Onate SA, Tsai SY, Tsai MJ, O'Malley BW. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science. 1995 Nov 24;270(5240):1354-7. PMID:7481822
- ↑ Hayashi Y, Ohmori S, Ito T, Seo H. A splicing variant of Steroid Receptor Coactivator-1 (SRC-1E): the major isoform of SRC-1 to mediate thyroid hormone action. Biochem Biophys Res Commun. 1997 Jul 9;236(1):83-7. PMID:9223431 doi:10.1006/bbrc.1997.6911
- ↑ Spencer TE, Jenster G, Burcin MM, Allis CD, Zhou J, Mizzen CA, McKenna NJ, Onate SA, Tsai SY, Tsai MJ, O'Malley BW. Steroid receptor coactivator-1 is a histone acetyltransferase. Nature. 1997 Sep 11;389(6647):194-8. PMID:9296499 doi:10.1038/38304
- ↑ Jenster G, Spencer TE, Burcin MM, Tsai SY, Tsai MJ, O'Malley BW. Steroid receptor induction of gene transcription: a two-step model. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):7879-84. PMID:9223281
- ↑ Liu Z, Wong J, Tsai SY, Tsai MJ, O'Malley BW. Steroid receptor coactivator-1 (SRC-1) enhances ligand-dependent and receptor-dependent cell-free transcription of chromatin. Proc Natl Acad Sci U S A. 1999 Aug 17;96(17):9485-90. PMID:10449719
- ↑ Litterst CM, Kliem S, Marilley D, Pfitzner E. NCoA-1/SRC-1 is an essential coactivator of STAT5 that binds to the FDL motif in the alpha-helical region of the STAT5 transactivation domain. J Biol Chem. 2003 Nov 14;278(46):45340-51. Epub 2003 Sep 3. PMID:12954634 doi:http://dx.doi.org/10.1074/jbc.M303644200
Categories: Histone acetyltransferase | Homo sapiens | Xu, H E. | Acyltransferase | Alternative initiation | Charge clamp | Chromatin regulator | Coactivator | Deacylcortivazol | Dimer interface | Disease mutation | Dna-binding | Glucocorticoid receptor | Hormone binding pocket | Lipid-binding | Metal-binding | Nuclear receptor coactivator 1 isoform 1 | Nucleus | Phosphoprotein | Protein binding | Proto-oncogene | Pseudohermaphroditism | Src1 | Steroid-binding | Transcription | Transcription regulation | Transferase | Zinc-finger
