Structure of E. coli DnaC helicase loader

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 87: Line 87:
===Gaps in the Template Model===
===Gaps in the Template Model===
-
<applet load='Dnac_from_2ggz_a.pdb' size='500' frame='true' align='right'
+
 
-
scene='User:Eric_Martz/Sandbox_4/2qgz/3' />
+
The template was 2QGZ (<scene name='User:Eric_Martz/Sandbox_4/2qgz/3'>initial scene</scene>). The portion of the template used was Glu107-Arg300. Only the amino-terminal 6 residues were not used as template (translucent). Note that there are <scene name='User:Eric_Martz/Sandbox_4/2qgz/5'>three loops</scene> in this segment of the template that lack coordinates due to [[disorder]] in the crystal (marked with spacefilled alpha-carbon atoms).
The template was 2QGZ (<scene name='User:Eric_Martz/Sandbox_4/2qgz/3'>initial scene</scene>). The portion of the template used was Glu107-Arg300. Only the amino-terminal 6 residues were not used as template (translucent). Note that there are <scene name='User:Eric_Martz/Sandbox_4/2qgz/5'>three loops</scene> in this segment of the template that lack coordinates due to [[disorder]] in the crystal (marked with spacefilled alpha-carbon atoms).
Line 176: Line 175:
<applet load='2chg9-63_aligned_with_dnac_model.pdb' size='400' frame='true' align='right' caption='Structural alignment.' scene='User:Eric_Martz/Sandbox_6/2qgz_3ec2_aligned_pdb/1'/>
<applet load='2chg9-63_aligned_with_dnac_model.pdb' size='400' frame='true' align='right' caption='Structural alignment.' scene='User:Eric_Martz/Sandbox_6/2qgz_3ec2_aligned_pdb/1'/>
-
When the [[PDB]] is searched with the DnaC sequence, the best match (December, 2008) is 23% sequence identity with 183 amino acids in the DnaC helicase loader of ''Aquifex aeolicus'', [[3ec2]] and [[3ecc]]. In order to find whether these structures have the same fold as the template ([[2qgz]] with 19% sequence identity to ''E. coli'' DnaC) used for the homology model, <font color="#3030ff">'''2qgz'''</font> was structurally aligned (<scene name='User:Eric_Martz/Sandbox_6/2qgz_3ec2_aligned_pdb/1'>restore initial alignment scene</scene>) with <font color="#ff0000">'''3ec2'''</font><ref>The structural alignment of 2qgz with 3ec2 was performed with the ''Magic Fit'' function of DeepView version 3.6beta2. 2qgz 115-259 aligned with 3ec2 42-185 (3 gaps in 3ec2's alignment: 128-9, 134-5, 155-9). 135 alpha carbons were aligned with RMS 2.76 Å. The sequence identity between 2qgz and 3ec2 is 28% over the 185 amino acid length of the shorter, 3ec2. ''Magic Fit'' is a sequence-alignment-guided structural alignment (see [[Structural_alignment_tools#DeepView_.3D_Swiss-PDBViewer|Structural alignment tools]]).</ref>. The similarity of folds lends considerable confidence to the homology model of ''E. coli'' DnaC. This was further confirmed by the 2012 Swiss Model run, when 3ecc was selected as the best template (see discussion above).
+
When the [[PDB]] is searched with the DnaC sequence, the best match (December, 2008) is 23% sequence identity with 183 amino acids in the DnaC helicase loader of ''Aquifex aeolicus'', [[3ec2]] and [[3ecc]]. In order to find whether these structures have the same fold as the template ([[2qgz]] with 19% sequence identity to ''E. coli'' DnaC) used for the homology model, <font color="#3030ff">'''2qgz'''</font> <scene name='User:Eric_Martz/Sandbox_6/2qgz_3ec2_aligned_pdb/1'>was structurally aligned</scene> with <font color="#ff0000">'''3ec2'''</font><ref>The structural alignment of 2qgz with 3ec2 was performed with the ''Magic Fit'' function of DeepView version 3.6beta2. 2qgz 115-259 aligned with 3ec2 42-185 (3 gaps in 3ec2's alignment: 128-9, 134-5, 155-9). 135 alpha carbons were aligned with RMS 2.76 Å. The sequence identity between 2qgz and 3ec2 is 28% over the 185 amino acid length of the shorter, 3ec2. ''Magic Fit'' is a sequence-alignment-guided structural alignment (see [[Structural_alignment_tools#DeepView_.3D_Swiss-PDBViewer|Structural alignment tools]]).</ref>. The similarity of folds lends considerable confidence to the homology model of ''E. coli'' DnaC. This was further confirmed by the 2012 Swiss Model run, when 3ecc was selected as the best template (see discussion above).
The second best sequence-identity hit in the PDB is 39% identity with 54 amino acids (positions 9-63 of chain A) of replication factor C ([[2chg]]), which align with 72-124 of DnaC. When the above homology model of DnaC (made with template 2QGZ) is <scene name='User:Eric_Martz/Sandbox_4/2chg9-63_aligned_with_dnac_mod/1'>structurally aligned</scene> with residues 9-63 of 2CHG<ref>Structural alignment done with DeepView 3.6b3 using Magic Fit of carbon alphas.</ref>, 43 alpha carbons (out of 54) aligned with RMS deviation 2.3 &Aring;. <font color="#ff0000">'''Residues 21-63 of 2CHG'''</font> aligned with <font color="#3030ff">'''residues 80-124 of the DnaC homology model'''</font>. (Non-aligned portions are pastel.) This result adds firther confidence to this region of the homology model, since the structural alignment of 2CHG:A21-63 occurred in the same range as the sequence alignment (which was 72-124 in DnaC).
The second best sequence-identity hit in the PDB is 39% identity with 54 amino acids (positions 9-63 of chain A) of replication factor C ([[2chg]]), which align with 72-124 of DnaC. When the above homology model of DnaC (made with template 2QGZ) is <scene name='User:Eric_Martz/Sandbox_4/2chg9-63_aligned_with_dnac_mod/1'>structurally aligned</scene> with residues 9-63 of 2CHG<ref>Structural alignment done with DeepView 3.6b3 using Magic Fit of carbon alphas.</ref>, 43 alpha carbons (out of 54) aligned with RMS deviation 2.3 &Aring;. <font color="#ff0000">'''Residues 21-63 of 2CHG'''</font> aligned with <font color="#3030ff">'''residues 80-124 of the DnaC homology model'''</font>. (Non-aligned portions are pastel.) This result adds firther confidence to this region of the homology model, since the structural alignment of 2CHG:A21-63 occurred in the same range as the sequence alignment (which was 72-124 in DnaC).

Revision as of 11:00, 7 April 2013

Theoretical Model: The protein structure described on this page was determined theoretically, and hence should be interpreted with caution.
Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

Eric Martz, Alexander Berchansky, Joel L. Sussman, David Canner, Michal Harel

Personal tools