NS5B
From Proteopedia
(Difference between revisions)
Line 3: | Line 3: | ||
NS5B is the RNA dependent RNA polymerase of Hepatitis C virus. NS5B, like other RNA dependent RNA polymerases, is error prone. This viral RNA replicase is of approximately a million times lower fidelity than a replicative prokayrotic or eukaryotic DNA polymerase. This is due in part to the fact that NS5B contains no exonuclease or proofreading domain. IN NS5B two divalent cations coordinated by carboxyl groups (as seen in DNA polymerases) catalyze the polymerization of monomers of RNA triphosphates to extend a primer strand, that may have initiated ''de novo''. In the case of NS5B the residues that coordinate divalent cations (Mg2+ or Mn2+ ''in vitro'') are the three <scene name='NS5B/Native_ns5b/7'>active site aspartates (220, 318 and 319)</scene> seen here (PDB entry [[2hai]]). | NS5B is the RNA dependent RNA polymerase of Hepatitis C virus. NS5B, like other RNA dependent RNA polymerases, is error prone. This viral RNA replicase is of approximately a million times lower fidelity than a replicative prokayrotic or eukaryotic DNA polymerase. This is due in part to the fact that NS5B contains no exonuclease or proofreading domain. IN NS5B two divalent cations coordinated by carboxyl groups (as seen in DNA polymerases) catalyze the polymerization of monomers of RNA triphosphates to extend a primer strand, that may have initiated ''de novo''. In the case of NS5B the residues that coordinate divalent cations (Mg2+ or Mn2+ ''in vitro'') are the three <scene name='NS5B/Native_ns5b/7'>active site aspartates (220, 318 and 319)</scene> seen here (PDB entry [[2hai]]). | ||
- | Though Hepatitis C virus is of the Flaviviridae family the structure of NS5B is similar to the polymerase of bacteriophage Φ 6. The similarity to the bacteriophage polymerase is due to NS5B containing a fully encircled active site. Like many template-dependent nucleotide polymerases, NS5B can be visualized similar to a right hand. NS5B contains several <scene name='NS5B/Native_ns5b/ | + | Though Hepatitis C virus is of the Flaviviridae family the structure of NS5B is similar to the polymerase of bacteriophage Φ 6. The similarity to the bacteriophage polymerase is due to NS5B containing a fully encircled active site. Like many template-dependent nucleotide polymerases, NS5B can be visualized similar to a right hand. NS5B contains several <scene name='NS5B/Native_ns5b/8'>domains</scene>, fingers in blue, palm in magenta, thumb in green and a c-terminal domain in yellow. The palm domain contains the active site aspartates and there are several contacts between the fingers and thumbs domain that give the active site an encircled structure. There is a |
- | <scene name='NS5B/Native_ns5b/ | + | <scene name='NS5B/Native_ns5b/9'>beta-hairpin in thumb domain</scene> that is proposed to move upon formation of exiting double stranded RNA. |
- | <scene name='NS5B/Cv/1'>DNA was modeled into the NS5B model</scene> (PDB entries [[1rtd]] and [[2hai]], respectively) by aligning of palm domain of NS5B and the palm domain of HIV reverse transcriptase, which was co-crystallized in complex with DNA and an incoming dTTP. Then removing the protein portion HIV RT model while leaving the DNA where it fell into the proposed NS5B binding cleft. Looking closely at the <scene name='NS5B/Ns5b_with_dna/ | + | <scene name='NS5B/Cv/1'>DNA was modeled into the NS5B model</scene> (PDB entries [[1rtd]] and [[2hai]], respectively) by aligning of palm domain of NS5B and the palm domain of HIV reverse transcriptase, which was co-crystallized in complex with DNA and an incoming dTTP. Then removing the protein portion HIV RT model while leaving the DNA where it fell into the proposed NS5B binding cleft. Looking closely at the <scene name='NS5B/Ns5b_with_dna/5'>active site</scene> the catalytic Mg2+ ions are modeled in green, these would be coordinated by the three aspartic acid carboxylates, (D220, D318 and D319). A <scene name='NS5B/Ns5b_with_dna/6'>beta-hairpin</scene> (residues 440-455) in the thumb domain has been shifted to accommodate DNA, the hairpin is modeled into the minor groove, a possible binding site, particularly in the larger minor goove of dsRNA. There are noticeable steric clashes between the modeled DNA and the random coil at the end of the c-terminal domain. This domain is a linker that attaches to the membrane anchor of NS5B. |
The template strand is seen entering through a gap in the fingers domain. An incoming dTTP that would extend the primer strand lines up with the NS5B active site and duplex DNA exits the enzyme through the large central hole in the closed active site formed by the unusual contacts between the fingers and thumb domains. | The template strand is seen entering through a gap in the fingers domain. An incoming dTTP that would extend the primer strand lines up with the NS5B active site and duplex DNA exits the enzyme through the large central hole in the closed active site formed by the unusual contacts between the fingers and thumb domains. |
Revision as of 09:16, 9 April 2013
|
References
- Li H, Tatlock J, Linton A, Gonzalez J, Borchardt A, Dragovich P, Jewell T, Prins T, Zhou R, Blazel J, Parge H, Love R, Hickey M, Doan C, Shi S, Duggal R, Lewis C, Fuhrman S. Identification and structure-based optimization of novel dihydropyrones as potent HCV RNA polymerase inhibitors. Bioorg Med Chem Lett. 2006 Sep 15;16(18):4834-8. Epub 2006 Jul 7. PMID:16824756 doi:10.1016/j.bmcl.2006.06.065
- Ogata N, Alter HJ, Miller RH, Purcell RH. Nucleotide sequence and mutation rate of the H strain of hepatitis C virus. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3392-6. PMID:1849654
- Doublie S, Tabor S, Long AM, Richardson CC, Ellenberger T. Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 A resolution. Nature. 1998 Jan 15;391(6664):251-8. PMID:9440688 doi:http://dx.doi.org/10.1038/34593
- O'Farrell D, Trowbridge R, Rowlands D, Jager J. Substrate complexes of hepatitis C virus RNA polymerase (HC-J4): structural evidence for nucleotide import and de-novo initiation. J Mol Biol. 2003 Feb 28;326(4):1025-35. PMID:12589751
- Doublie S, Tabor S, Long AM, Richardson CC, Ellenberger T. Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 A resolution. Nature. 1998 Jan 15;391(6664):251-8. PMID:9440688 doi:http://dx.doi.org/10.1038/34593
- Kim YC, Russell WK, Ranjith-Kumar CT, Thomson M, Russell DH, Kao CC. Functional analysis of RNA binding by the hepatitis C virus RNA-dependent RNA polymerase. J Biol Chem. 2005 Nov 11;280(45):38011-9. Epub 2005 Sep 14. PMID:16166071 doi:10.1074/jbc.M508145200
- Moradpour D, Penin F, Rice CM. Replication of hepatitis C virus. Nat Rev Microbiol. 2007 Jun;5(6):453-63. Epub 2007 May 8. PMID:17487147 doi:10.1038/nrmicro1645
- Wang M, Ng KK, Cherney MM, Chan L, Yannopoulos CG, Bedard J, Morin N, Nguyen-Ba N, Alaoui-Ismaili MH, Bethell RC, James MN. Non-nucleoside analogue inhibitors bind to an allosteric site on HCV NS5B polymerase. Crystal structures and mechanism of inhibition. J Biol Chem. 2003 Mar 14;278(11):9489-95. Epub 2002 Dec 30. PMID:12509436 doi:10.1074/jbc.M209397200
- Pfefferkorn JA, Greene ML, Nugent RA, Gross RJ, Mitchell MA, Finzel BC, Harris MS, Wells PA, Shelly JA, Anstadt RA, Kilkuskie RE, Kopta LA, Schwende FJ. Inhibitors of HCV NS5B polymerase. Part 1: Evaluation of the southern region of (2Z)-2-(benzoylamino)-3-(5-phenyl-2-furyl)acrylic acid. Bioorg Med Chem Lett. 2005 May 16;15(10):2481-6. PMID:15863301 doi:10.1016/j.bmcl.2005.03.066
Proteopedia Page Contributors and Editors (what is this?)
Nicolas Villanueva, Alexander Berchansky, Kody Witham, Michal Harel, David Canner