3muu

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
m (Protected "3muu" [edit=sysop:move=sysop])
Line 1: Line 1:
-
[[Image:3muu.png|left|200px]]
 
- 
-
<!--
 
-
The line below this paragraph, containing "STRUCTURE_3muu", creates the "Structure Box" on the page.
 
-
You may change the PDB parameter (which sets the PDB file loaded into the applet)
 
-
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
 
-
or leave the SCENE parameter empty for the default display.
 
-
-->
 
{{STRUCTURE_3muu| PDB=3muu | SCENE= }}
{{STRUCTURE_3muu| PDB=3muu | SCENE= }}
- 
===Crystal structure of the Sindbis virus E2-E1 heterodimer at low pH===
===Crystal structure of the Sindbis virus E2-E1 heterodimer at low pH===
 +
{{ABSTRACT_PUBMED_21124457}}
-
 
+
==Function==
-
<!--
+
[[http://www.uniprot.org/uniprot/POLS_SINDV POLS_SINDV]] Capsid protein possesses a protease activity that results in its autocatalytic cleavage from the nascent structural protein. Following its self-cleavage, the capsid protein transiently associates with ribosomes, and within several minutes the protein binds to viral RNA and rapidly assembles into icosaedric core particles. The resulting nucleocapsid eventually associates with the cytoplasmic domain of E2 at the cell membrane, leading to budding and formation of mature virions. New virions attach to target cells, and after clathrin-mediated endocytosis their membrane fuses with the host endosomal membrane. This leads to the release of the nucleocapsid into the cytoplasm, followed by an uncoating event necessary for the genomic RNA to become accessible. The uncoating might be triggered by the interaction of capsid proteins with ribosomes. Binding of ribosomes would release the genomic RNA since the same region is genomic RNA-binding and ribosome-binding (By similarity).<ref>PMID:10482600</ref> <ref>PMID:9707418</ref> <ref>PMID:12424249</ref> <ref>PMID:17483865</ref> E3 protein's function is unknown (By similarity).<ref>PMID:10482600</ref> <ref>PMID:9707418</ref> <ref>PMID:12424249</ref> <ref>PMID:17483865</ref> E2 is responsible for viral attachment to target host cell, by binding to the cell receptor. Synthesized as a p62 precursor which is processed by furin at the cell membrane just before virion budding, giving rise to E2-E1 heterodimer. The p62-E1 heterodimer is stable, whereas E2-E1 is unstable and dissociate at low pH. p62 is processed at the last step, presumably to avoid E1 fusion activation before its final export to cell surface. E2 C-terminus contains a transitory transmembrane that would be disrupted by palmitoylation, resulting in reorientation of the C-terminal tail from lumenal to cytoplasmic side. This step is critical since E2 C-terminus is involved in budding by interacting with capsid proteins. This release of E2 C-terminus in cytoplasm occurs lately in protein export, and precludes premature assembly of particles at the endoplasmic reticulum membrane (By similarity).<ref>PMID:10482600</ref> <ref>PMID:9707418</ref> <ref>PMID:12424249</ref> <ref>PMID:17483865</ref> 6K is a constitutive membrane protein involved in virus glycoprotein processing, cell permeabilization, and the budding of viral particles. Disrupts the calcium homeostasis of the cell, probably at the endoplasmic reticulum level. This leads to cytoplasmic calcium elevation. Because of its lipophilic properties, the 6K protein is postulated to influence the selection of lipids that interact with the transmembrane domains of the glycoproteins, which, in turn, affects the deformability of the bilayer required for the extreme curvature that occurs as budding proceeds. Present in low amount in virions, about 3% compared to viral glycoproteins.<ref>PMID:10482600</ref> <ref>PMID:9707418</ref> <ref>PMID:12424249</ref> <ref>PMID:17483865</ref> E1 is a class II viral fusion protein. Fusion activity is inactive as long as E1 is bound to E2 in mature virion. After virus attachment to target cell and endocytosis, acidification of the endosome would induce dissociation of E1/E2 heterodimer and concomitant trimerization of the E1 subunits. This E1 trimer is fusion active, and promotes release of viral nucleocapsid in cytoplasm after endosome and viral membrane fusion. Efficient fusion requires the presence of cholesterol and sphingolipid in the target membrane (By similarity).<ref>PMID:10482600</ref> <ref>PMID:9707418</ref> <ref>PMID:12424249</ref> <ref>PMID:17483865</ref>
-
The line below this paragraph, {{ABSTRACT_PUBMED_21124457}}, adds the Publication Abstract to the page
+
-
(as it appears on PubMed at http://www.pubmed.gov), where 21124457 is the PubMed ID number.
+
-
-->
+
-
{{ABSTRACT_PUBMED_21124457}}
+
==About this Structure==
==About this Structure==
Line 22: Line 10:
==Reference==
==Reference==
-
<ref group="xtra">PMID:21124457</ref><references group="xtra"/>
+
<ref group="xtra">PMID:021124457</ref><references group="xtra"/><references/>
[[Category: Sindbis virus]]
[[Category: Sindbis virus]]
[[Category: Jose, J.]]
[[Category: Jose, J.]]
Line 29: Line 17:
[[Category: Rossmann, M G.]]
[[Category: Rossmann, M G.]]
[[Category: Xiang, Y.]]
[[Category: Xiang, Y.]]
 +
[[Category: Beta barrel]]
 +
[[Category: Ig-like fold]]
 +
[[Category: Viral protein]]

Revision as of 21:12, 17 April 2013

Template:STRUCTURE 3muu

Contents

Crystal structure of the Sindbis virus E2-E1 heterodimer at low pH

Template:ABSTRACT PUBMED 21124457

Function

[POLS_SINDV] Capsid protein possesses a protease activity that results in its autocatalytic cleavage from the nascent structural protein. Following its self-cleavage, the capsid protein transiently associates with ribosomes, and within several minutes the protein binds to viral RNA and rapidly assembles into icosaedric core particles. The resulting nucleocapsid eventually associates with the cytoplasmic domain of E2 at the cell membrane, leading to budding and formation of mature virions. New virions attach to target cells, and after clathrin-mediated endocytosis their membrane fuses with the host endosomal membrane. This leads to the release of the nucleocapsid into the cytoplasm, followed by an uncoating event necessary for the genomic RNA to become accessible. The uncoating might be triggered by the interaction of capsid proteins with ribosomes. Binding of ribosomes would release the genomic RNA since the same region is genomic RNA-binding and ribosome-binding (By similarity).[1] [2] [3] [4] E3 protein's function is unknown (By similarity).[5] [6] [7] [8] E2 is responsible for viral attachment to target host cell, by binding to the cell receptor. Synthesized as a p62 precursor which is processed by furin at the cell membrane just before virion budding, giving rise to E2-E1 heterodimer. The p62-E1 heterodimer is stable, whereas E2-E1 is unstable and dissociate at low pH. p62 is processed at the last step, presumably to avoid E1 fusion activation before its final export to cell surface. E2 C-terminus contains a transitory transmembrane that would be disrupted by palmitoylation, resulting in reorientation of the C-terminal tail from lumenal to cytoplasmic side. This step is critical since E2 C-terminus is involved in budding by interacting with capsid proteins. This release of E2 C-terminus in cytoplasm occurs lately in protein export, and precludes premature assembly of particles at the endoplasmic reticulum membrane (By similarity).[9] [10] [11] [12] 6K is a constitutive membrane protein involved in virus glycoprotein processing, cell permeabilization, and the budding of viral particles. Disrupts the calcium homeostasis of the cell, probably at the endoplasmic reticulum level. This leads to cytoplasmic calcium elevation. Because of its lipophilic properties, the 6K protein is postulated to influence the selection of lipids that interact with the transmembrane domains of the glycoproteins, which, in turn, affects the deformability of the bilayer required for the extreme curvature that occurs as budding proceeds. Present in low amount in virions, about 3% compared to viral glycoproteins.[13] [14] [15] [16] E1 is a class II viral fusion protein. Fusion activity is inactive as long as E1 is bound to E2 in mature virion. After virus attachment to target cell and endocytosis, acidification of the endosome would induce dissociation of E1/E2 heterodimer and concomitant trimerization of the E1 subunits. This E1 trimer is fusion active, and promotes release of viral nucleocapsid in cytoplasm after endosome and viral membrane fusion. Efficient fusion requires the presence of cholesterol and sphingolipid in the target membrane (By similarity).[17] [18] [19] [20]

About this Structure

3muu is a 6 chain structure with sequence from Sindbis virus. Full crystallographic information is available from OCA.

Reference

  • Li L, Jose J, Xiang Y, Kuhn RJ, Rossmann MG. Structural changes of envelope proteins during alphavirus fusion. Nature. 2010 Dec 2;468(7324):705-8. PMID:21124457 doi:10.1038/nature09546
  1. Smit JM, Bittman R, Wilschut J. Low-pH-dependent fusion of Sindbis virus with receptor-free cholesterol- and sphingolipid-containing liposomes. J Virol. 1999 Oct;73(10):8476-84. PMID:10482600
  2. DeTulleo L, Kirchhausen T. The clathrin endocytic pathway in viral infection. EMBO J. 1998 Aug 17;17(16):4585-93. PMID:9707418 doi:10.1093/emboj/17.16.4585
  3. Sanz MA, Madan V, Carrasco L, Nieva JL. Interfacial domains in Sindbis virus 6K protein. Detection and functional characterization. J Biol Chem. 2003 Jan 17;278(3):2051-7. Epub 2002 Nov 6. PMID:12424249 doi:10.1074/jbc.M206611200
  4. Antoine AF, Montpellier C, Cailliau K, Browaeys-Poly E, Vilain JP, Dubuisson J. The alphavirus 6K protein activates endogenous ionic conductances when expressed in Xenopus oocytes. J Membr Biol. 2007 Jan;215(1):37-48. Epub 2007 May 5. PMID:17483865 doi:10.1007/s00232-007-9003-6
  5. Smit JM, Bittman R, Wilschut J. Low-pH-dependent fusion of Sindbis virus with receptor-free cholesterol- and sphingolipid-containing liposomes. J Virol. 1999 Oct;73(10):8476-84. PMID:10482600
  6. DeTulleo L, Kirchhausen T. The clathrin endocytic pathway in viral infection. EMBO J. 1998 Aug 17;17(16):4585-93. PMID:9707418 doi:10.1093/emboj/17.16.4585
  7. Sanz MA, Madan V, Carrasco L, Nieva JL. Interfacial domains in Sindbis virus 6K protein. Detection and functional characterization. J Biol Chem. 2003 Jan 17;278(3):2051-7. Epub 2002 Nov 6. PMID:12424249 doi:10.1074/jbc.M206611200
  8. Antoine AF, Montpellier C, Cailliau K, Browaeys-Poly E, Vilain JP, Dubuisson J. The alphavirus 6K protein activates endogenous ionic conductances when expressed in Xenopus oocytes. J Membr Biol. 2007 Jan;215(1):37-48. Epub 2007 May 5. PMID:17483865 doi:10.1007/s00232-007-9003-6
  9. Smit JM, Bittman R, Wilschut J. Low-pH-dependent fusion of Sindbis virus with receptor-free cholesterol- and sphingolipid-containing liposomes. J Virol. 1999 Oct;73(10):8476-84. PMID:10482600
  10. DeTulleo L, Kirchhausen T. The clathrin endocytic pathway in viral infection. EMBO J. 1998 Aug 17;17(16):4585-93. PMID:9707418 doi:10.1093/emboj/17.16.4585
  11. Sanz MA, Madan V, Carrasco L, Nieva JL. Interfacial domains in Sindbis virus 6K protein. Detection and functional characterization. J Biol Chem. 2003 Jan 17;278(3):2051-7. Epub 2002 Nov 6. PMID:12424249 doi:10.1074/jbc.M206611200
  12. Antoine AF, Montpellier C, Cailliau K, Browaeys-Poly E, Vilain JP, Dubuisson J. The alphavirus 6K protein activates endogenous ionic conductances when expressed in Xenopus oocytes. J Membr Biol. 2007 Jan;215(1):37-48. Epub 2007 May 5. PMID:17483865 doi:10.1007/s00232-007-9003-6
  13. Smit JM, Bittman R, Wilschut J. Low-pH-dependent fusion of Sindbis virus with receptor-free cholesterol- and sphingolipid-containing liposomes. J Virol. 1999 Oct;73(10):8476-84. PMID:10482600
  14. DeTulleo L, Kirchhausen T. The clathrin endocytic pathway in viral infection. EMBO J. 1998 Aug 17;17(16):4585-93. PMID:9707418 doi:10.1093/emboj/17.16.4585
  15. Sanz MA, Madan V, Carrasco L, Nieva JL. Interfacial domains in Sindbis virus 6K protein. Detection and functional characterization. J Biol Chem. 2003 Jan 17;278(3):2051-7. Epub 2002 Nov 6. PMID:12424249 doi:10.1074/jbc.M206611200
  16. Antoine AF, Montpellier C, Cailliau K, Browaeys-Poly E, Vilain JP, Dubuisson J. The alphavirus 6K protein activates endogenous ionic conductances when expressed in Xenopus oocytes. J Membr Biol. 2007 Jan;215(1):37-48. Epub 2007 May 5. PMID:17483865 doi:10.1007/s00232-007-9003-6
  17. Smit JM, Bittman R, Wilschut J. Low-pH-dependent fusion of Sindbis virus with receptor-free cholesterol- and sphingolipid-containing liposomes. J Virol. 1999 Oct;73(10):8476-84. PMID:10482600
  18. DeTulleo L, Kirchhausen T. The clathrin endocytic pathway in viral infection. EMBO J. 1998 Aug 17;17(16):4585-93. PMID:9707418 doi:10.1093/emboj/17.16.4585
  19. Sanz MA, Madan V, Carrasco L, Nieva JL. Interfacial domains in Sindbis virus 6K protein. Detection and functional characterization. J Biol Chem. 2003 Jan 17;278(3):2051-7. Epub 2002 Nov 6. PMID:12424249 doi:10.1074/jbc.M206611200
  20. Antoine AF, Montpellier C, Cailliau K, Browaeys-Poly E, Vilain JP, Dubuisson J. The alphavirus 6K protein activates endogenous ionic conductances when expressed in Xenopus oocytes. J Membr Biol. 2007 Jan;215(1):37-48. Epub 2007 May 5. PMID:17483865 doi:10.1007/s00232-007-9003-6

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools